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Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment

of the Requirements for the Degree of
Doctor of Philosophy

MANY BODY PERTURBATION THEORY USING A RESTRICTED
OPEN-SHELL HARTREE-FOCK (ROHF) REFERENCE FUNCTION

By

WALTER JOHN LAUDERDALE

December 1991

Chairman: Rodney J. Bartlett
Major department: Chemistry

One of the most common reference functions used for open shell molecules is the

unrestricted Hartree-Fock (UHF) reference. While this reference is useful for many

molecular systems, it can sometimes suffer from the mixing of higher multiplicity

states into the state of interest. This phenomenon is termed spin contamination. A

number of projection techniques have been developed to correct the UHF reference

at the SCF and correlated levels. General implementation of gradients for these

projected methods, however, can be complex and computationally expensive. Nor

are such methods rigorously extensive, as required for many-electron methods. These

facts limit the usefulness of these methods.

This work presents the development of an alternative approach. Rather than

attempting to correct the deficiencies in the UHF reference, we start with a reference

(ROHF) which is an eigenfunction of spin. The treatment of electron correlation is

introduced using many body perturbation theory (MBPT), which is perhaps the most

efficient way of adding the critical effects of electron correlation. This development

is taken from the coupled cluster (CC) perspective. While othe s have used this
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reference to conduct MBPT calculations, we present a more general derivation which

avoids one of the drawbacks of previous work, namely the requirement of an iterative

solution for the wavefunction and energy. By exploiting the invariance of the CC

(MBPT) energy to rotations in the occupied-occupied and virtual-virtual spaces,

one can obtain equations which lead to the solution for the wavefunction in a non-

iterative fashion. Additionally, this derivation leads to an efficient formulation for

ROHF-MBPT gradients, also taken from the CC perspective.

This dissertation presents a new development in treating electron correlation.

First, there is the derivation of a general ROHF based MBPT for energies and gra-

dients. Second, these methods have been implemented through full fourth order in

MBPT for energies, and through third order for gradients in the ACES II program sys-

tem. Third, these methods have been applied to selected molecular problems where a

spin contaminated UHF reference is known to give poor results for MBPT. For these

cases, ROHF based MBPT has shown considerable improvement when compared to

experiment or more complete correlation treatments. These methods therefore of-

fer an opportunity to conduct correlated studies on molecular systems and obtain

reasonable results when UHF based schemes would not.

v



CHAPTER 1

INTRODUCTION

Many body perturbation theory (MBPT) [1, 2] is well known to offer a highly

efficient correlation approximation for many problems in the electronic structure of

molecules. For it to be sufficiently accurate in low orders, however, the reference func-

tion has to offer a reasonably good approximation for the problem of interest. For

open-shell systems, unrestricted Hartree-Fock (UHF) has usually served as the refer-

ence [1, 2, 3, 4, 5]. Such methods which relax the restriction of having identical a and

0 orbitals and can relax other symmetry restrictions have certain advantages, notably

in bond breaking situations. However, they also have several disadvantages. Besides

the frequent existence of several different UHF solutions, UHF functions are not eigen-

functions of spin, as they are contaminated by states of higher spin multiplicity. The

infinite-order coupled-cluster generalizations of MBPT like CCSD [6], and particu-

larly CCSDT [7, 8] and its approximations, CCSDT-n [9], CCSD+T(CCSD) [10], and

CCSD(T) and others 11, 12] have a great capacity to eliminate spin contamination

[13, 14, 15], but the efficient and inexpensive non-iterative MBPT(n) approximations

do not [1, 2].

Because of this problem, various UHF based MBPT spin-projected methods have

been developed [15, 16, 17, 18, 19, 20], where one or more contaminating multiplicities

are removed from the UHF/MBPT(2) solution. This procedure, however, is difficult

to apply in higher orders of MBPT. Furthermore, the spin-projected MBPT methods

will not usually be size-extensive. Also, since projection does not correctly preserve

I
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order, ambiguities can occur in determining relative energy differences between open-

and closed-shell molecules at a given MBPT(n) level. Finally, building analytical

gradients upon such projected approaches [19, 20], an integral part of any widely

used method in quantum chemistry, is difficult for even MBPT(2) [20].

A much more general approach to eliminate spin contamination in open-shell sys-

tems is to start from a spin-eigenfunction, such as a high-spin restricted open-shell

Hartree-Fock (ROHF) reference. Such an ROHF based MBPT was proposed by

Hubac and Carsky [21], but has the disadvantage of redefining H0 as a sum of diag-

onal generalized Fock operators, which changes the meaning of MBPT(n) from that

in the usual canonical (Moller-Plesset) Hartree-Fock case and loses certain invariant

properties. An alternative route is to correct the reference via a generalized MBPT

that retains some of the essential elements of CC theory. This approach derives from

that used by Laidig, Purvis, and Bartlett [22] for localized orbitals, and a related ap-

proach of Wolinski and Pulay [23]. It is also a special case of the ROHF-CC method

originally proposed by Bartlett and co-workers [24, 25]. The approach of Laidig, et al.

[22] was primarily concerned with CC solutions, which unlike MBPT(n), are indepen-

dent of any choice of H0 . Hence, using a sum of diagonal Fock operators as H0 was

satisfactory for CC theory, but changes the meaning of finite order MBPT(n) results

and their invariance properties. The method of Wolinski and Pulay [23] retains the

correspondence to each order in MBPT with the canonical Hartree-Fock reference

case, but at the cost of an off-diagonal resolvent operator which requires an iterative

solution for the amplitudes. The cost for an iterative solution is modest, except that

to provide a high accuracy method, it is necessary to include the triples contribution

in MBPT(4). An iterative inclusion of this expensive N' step would be impractical,

recommending a non-iterative approach. Furthermore, our approach is readily gen-

eralizable to any order of perturbation theory. Rather than a spin-adapted approach
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as used by Wolinski and Pulay [23], our approach is based upon a spin orbital formu-

lation like the ROHF-CC [24] method which enables treating any order. This gives

it the projected spin eigenfunction property (ROHFIS2I qVMBPT) = S(S + 1). The

expectation value of TMBPT is not S(S + 1), though. Additionally, our approach

retains the invariance properties of MBPT/CC theory to transformations among just

occupied or unoccupied orbitals. Consequently, facilitated by the latter point, an-

alytical gradients can easily be developed for the proposed ROHF-MBPT methods

[26], built upon the recently proposed ROHF-CC formalism [27].

The remainder of this work will cover the theoretical development of ROHF based

MBPT energies and gradients through full fourth order. This will be followed by

representative examples of molecular systems where it is appropriate to consider us-

ing these ROHF based methods. In particular, the use of ROHF-MBPT(2) and

ROHF-CCSD gradients for geometry optimization followed by single-point energy

calculations through ROHF-MBPT(4) are presented. These results will demonstrate

the usefulness of this new approach to electron correlatiun.



CHAPTER 2

ROHF-MBPT ENERGIES

In this chapter, only the expressions for the correlation energy will be derived.

A discussion of the ROHF reference itself can be found in reference [28]. As the

starting point for the derivation of the formulas for ROHF-MBPT, we use the full

CCSD equations. In particular, the most efficient approach to implementing these

equations with symmetry has been shown to be the direct product decomposition

(DPD) method [29]. In the following, we follow the conventions that i, j, k,

represent occupied orbitals; a, b, c, ... represent unoccupied orbitals; and p, q, r, ...

are generic indices representing either kind of orbital. The explicit equations for the

CCSD model in fully factored spin-orbital form are presented below.

T1 equation:

tD? fia+ IrFa e - tr:m ZFe - EZtf(naIlif)
e mn me nf

- E Z t~f(mallef) - - ta(nmllei) (2.1)
2mef Im2 men m

T2 equation:

ij Da (iijlab) + P(ab) E tje (Fb - tn.m)

PiiZt? ( 2m 24 ±Wm ni

4
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+ -Zr:;' wab~ + P(ij) P(ab) E (tae Wmbei t ( t j)
2ef me i M~e)

+ P(ij) Fjt(Iej - P(ab) 1: ta (mbIliij(22
Ie , alej nm(2)

Definition of F and W intermediates:

FTae = 1'ae)fae - f.e ta + 1: Ztf(malf e) - jfma(rnnjjef) (2.3)

Fm, (1 _ mi)f m i + - 1: t~fme + 1: t'(mnljie) + - ~J: e ~(mn~jef) 24
e en n2nefn(24

-Fe = fm + I:tf (mnjef) (2.5)
nf

Wn = (mnllij) + P(ij) Zt'(mnhlize) + 1 E ,%jf(mn 11ef)(.)

j ef(26

VWab,!f (abllef) - P(ab) tb (amlef) + 1 E r(nif (2b
M M j mn nrnlf 27

Winbej =(mbIef)±t (mbIjef) _Ztb(mnIjei)-E 1 tf+ (mllf)(28
f n nf(2i n)mnjf(,8

Definition of the effective two-particle excitation operators -r and i

-iab = ab 1 ba\=t~ ttbta (2.9)

tab +±tatl tt-2.0
TZj = t i j 3 j (210
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In the above equations, bp, is the Kronecker delta, the denominator arrays (D)

are defined by

D' = fii - f.. (2.11)

and

D1b fii + fjj - fa. -fbb (2.12)

and P(ij) and P(ab) are antisymmetric operators given by

P(pq) = 1 - P(pq) (2.13)

where P'(pq) interchanges the indices p and q. If we are using a Hartree-Fo U refer-

ence function, then the diagonal elements of the Fock matrix are simply the orbital

eigenvalues. It is important to note that this places the diagonal pieces of f on the left

hand side of the equations; this means the diagonal parts of fja and fin: are excluded

from the definition of the corresponding F intermediates.

At this point, we can now extract the terms which are required to obtan the

correct solution for each order of ROHF-MBPT. In order to get the terms, we make

the choice that fia is a first order term, while fab and fi are zeroth order terms.

With this in mind, we look at the total order of each of the contributing terms. The

expressions for the first order amplitudes are therefore

t()D , = fia + Zt )Fe) - Mi (2.14)
e m

t()D (iillab) + P(ab) Z z?;(1). 2 - P(ij) tiA~'1)-j0 (2.15)
a m

The expressions for the second order amplitudes are

tan =a te(2)ja( -) _ E ta(2). ()
a (m



7

+ EI ?'F' tf(1"(naIjif) - - E t~41~')(maIjef)
me I nf n 2mef i

-1 (2.16)
2men n)nrje)(.6

Pabab) N- tae(2).F~eo)-Pij ()yO

+ PZr(nb(1 E + 2.

+ P(jcb) M ~'W~ P i) ~'(b~j
me e

-P(ab) E ta (')(mbIjij) (2.17)
m

The expressions for the third order amplitudes (neglecting triple excitations) are

+Z(ta ()gy(li) + ta7 (')j-)

meme SM m

mee

2f men

00')D al P(ab) E (tae(3).F7() + fi2)

2 -P(ab) i
2 e m
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ab (1)sr4O) + tb M(1)

- P(ij) q..-,, ) y

2 !\'mn .,U2Wm')i abm_ ()W(2)i

(rie f m() '() + Tmn, mr12)

ef
1 ~ ~ [t- el2, (2) .,.e()ej+ (2)

P(2j) P(a b) i ( tSM(2W e t()V(2) ] -t ')t ,(') (mblleJ)

me

+ P(ij) E t (2)(abIjej) - P(ab) tj7 t (2)(mbllij) (2.19)
e m

If we have a Hartree-Fock reference function, then the P0) intermediates are all

zero, since the Fock matrix is diagonal. However, the a and /3 Fock matrices formed

from the ROHF eigenvectors are not diagonal, and so the F (°) intermediates are

nonzero. For this reason each of the amplitudes must be solved for by iterating until

they do not change.

A more efficient approach is obtained by exploiting the invariance of the MBPT

energy to rotations among the occupied-occupied and virtual-virtual blocks of the

Fock matrix. We can use a unitary transformation to rotate the ROHF eigenvectors

so that they will now bring the occupied-occupied and virtual-virtual blocks of the

Fock matrix to diagonal form. The orbitals which have this property are called

semicanonical orbitals [30]. This transformation does not change the character of the

occupied-virtual part of the Fock matrix, however. These blocks of the Fock matrix

still have nonzero elements. However, their values are changed to reflect the use of

the new orbitals.

Using semicanonical orbitals we can express the T amplitudes as

First order amplitudes:
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=() (i'jIlab) (2.21)

Second order amplitudes:

)?2 D? Et 1: t (naIlif) -" ('): t~f (1(mallef)
me nf 2mef

- t( 1 )(nmIjei) (2.22)

= ! mni + jL u bef
2mn 2 ef

+PP ab E f()W~b
me

+P(ij) I t (1)(abIjei) - P(ab) 1II t?"(')(mbjjij) 2.3

e m

Third order amplitudes:

ta(3 )Da - ~ ).F2 St 4(1).17(2)

e In

+ (2)~ 2 F 1~ + te()r2)
me

n Z~2 (naIlif) - 1 tm t4 2 (mallef)
nf 2 mef

2 men mn (nmllei) (2.24)
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t P(ab) E t?;()F-) 2 P(ab) E tP ))

e nej m n m(M.

S(bf (2 )() (i).(1) Wm)

+ (ij)P(ab) i [ta 2 Wm1b. + t.e((1)V) V,(,) t (1) ta(1)(mblej))
me

+ P(ij) z t(2) (abllej) - P(ab) E ta,(2)(mbllij) (2.25)
e M

These amplitudes no longer depend on themselves and hence correspond to a

non-iterative solution.

In order to get the expressions for the full fourth order energy, we need to examine

the contribution of triple excitations. The second order T3 is given by

ijk(2 ijk : Ptij 1k)P (MC

ta 2)Dab P(jk)P(a/bc) t (l)(bcllek) - P(i/jk)P(ab/c) ' t1(mcllik)
e m

+P(ab/c) 1 t( 2 ) fhe - P(ij/k) 1 (2) f,,nk (2.26)
e m

In Eqn. (2.26), the operators P(pq/r) mean that p and q may be permuted with r,

but not with themselves.1 Similarly, for P(p/qr), p may be permuted with q or r,

but not q and r with themselves. The sign change associated with these operators

is given by (-1)', where z is the number of interchanges. For example, P(pq/r) is

represented as

'The P(pq) operators defined for the CCSD equations given earlier can be expressed as P(p/q).
The slash is dropped since it is redundant; if no interchange occurred, then the operator would be
unity and could be omitted from the equations.
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P(pq/r) = 1 - P(pr) - P(qr) (2.27)

where P is the interchange operator defined earlier.

Once again we see that if we use the standard canonical orbitals, we will have

to iterate to get T ( 2) . For T3, this requires two additional N 7 contractions and is

particularly expensive. Use of standard orbitals would essentially prohibit a full

MBPT(4) energy calculation except for a small number of basis functions. However,

using semicanonical orbitals eliminates the terms involving contractions with fce and

fink. This simplifies the expression to

tabc( 2 ) abc '

ijk Dijk = P(ij/k)P(a/bc) E tO)(bc[[ek) - P(i/jk)P(ab/c) E t () (mcljk)
e m

(2.28)

The additional terms arising from inclusion of T3 in the T1 and T 2 equations are

= > t, n (2)(mnllef) (2.29)
mnef

tb(Dib = P(ab) t~j (mbllef)- P(ij) t (2 (nImnllej) (2.30)
mef men

These increments to T (3 ) and T( 3 ) are the same as those obtained with a Hartree-Fock

reference function.

At this point, we can calculate the MBPT(n) energy using the expression

AE (n) = Zt(n-I)fa, + 1 Er .b(nl) (ijllab) (2.31)
ta 4 ijab

where n is the order of perturbation theory. A more efficient approach to calculating

the energy can be realized by exploiting the 2n rule of perturbation theory [31, 32'.

This allows the computation of the SDQ-MBPT(4) and full MBPT(4) energies with-

out using the full third order amplitudes. The fourth-order energy contributions
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arising from pieces of the third-order amplitudes formed via contractions of T (2) and

T(2) with F and W intermediates are given by

AE(L4  =D ' + I o + ijk i

a .. ?,j abc2]
ijk

+P(ijP((ab) j f [)t(2) _ t(2)t&M 1)] (2.32)

where "L" stands for linear contributions. Exclusion of the T (2) term in Eqn. (2.32)

gives the AEL4 ) expression for SDQ-MBPT(4). If we eliminate these linear contribu-

tions from the equations for T 3) and T2(3), we need only compute those pieces which

are quadratic in the first-order amplitudes. The remaining pieces of the third-order

amplitudes are then

ta(3) tD -t ,, -ta ()-( 2) + Et?, (1)TF(2.33)
e m me

tab(3)- a  Paeab) (2) -lt (1.77m)

) D = P(ab) E F~2 e)
-ij NL Q ij be -e t _; ( 2 mb(1 1

(_P ij.. (2) + . 1 ) ()

S:r mj 2 me)

m +
+ ' 11 _ab (1)VA,(2) 1 ef (1) I/V(2)

2 , Z ,,, mnij + 2L . abef
mn e f

+P(ij)P(ab) E (tae (1)W(2 _e i - t (1(mblc))
me

2 mn j ±2 ef tabe (2.34)

where the "NL" means non-linear. It is important to note that the second-order

amplitudes do not appear in Eqns. (2.33) and (2.34). The equivalence of these

energy expressions is shown in detail in Appendix A, where an analogous algebraic

derivation of ROHF-MBPT energies is presented.
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The expressions for the semicanonical orbital representation of the amplitudes

were programmed through full MBPT(4). Those for the standard orbital represen-

Lation were programmed through SDQ-MBPT(4) (fourth order without inclusion of

triples). This was done to provide a check on the programming of the semicanoni-

cal expressions. For several test cases the energies through SDQ-MBPT(4) were ir

agreement to nine decimal places between the two different orbital representations.

This check ensured that our implementation was correct. These methods have now

been included in the ACES II [33] program system. Results from calculations using

these expressions are given in Chapter 4.



CHAPTER 3

ROHF-MBPT GRADIENTS

The development of gradients for a theoretical method is important if the method

is to be routinely applied to chemistry. Searching the potential energy surface of

polyatomic systems is generally an intractable problem without ready availability of

gradients. Therefore, in conjunction with the development of ROHF-MBPT energies,

we also present the theory for ROHF-MBPT gradients through full MBPT(4).

In general, the derivative of the energy can be given by

aE [c(x), C(X), I(x)] aOc +OE W0 + E a9I

ax- ac + +U W (3.1)

where c represents the molecular orbital coefficients, C the determinantal coefficients,

I the one- and wo-electron integrals, and X is the perturbation. For a CC or MBPT

method, all of these derivatives are required. If we consider X to represent nuclear

displacements, then this equation suggests that we need to solve for 3N molecular

gradients (N = number of atoms). In practice, it is possible to determine Oc/,OX by

using the Z-vector method [34], which replaces the need to solve Oc/(OX for all X with

the solution of a single, perturbation-independent linear equation. In a completely

analogous fashion, the solution of OC/OX (or OT/OX) for each X can be avoided by

solving the linear perturbation-independent A equations [35]. This particular devel-

oprmcnt is critical, since without this approach. the need to solve 3N CC (MBPT)

problems would eliminate CC/MBPT methods as efficient choices for searching po-

tential energy surfaces.

14
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As with the formulation of expressions for calculating the MBPT energies using

an ROHF reference, we start from the gradient expressions for coupled cluster thcory.

The equations which will be used are based on the formalism of Salter, Trucks, and

Bartlett [35], as adapted to handle non-Hartree-Fock cases by Gauss, et. al. [27, 36].

As mentioned above, one important step in the analytic evaluation of the CC energy

gradient involves the solution of the A or "CC response" equation, which completely

accounts for the first order response of the coupled cluster amplitudes to an external

perturbation. If we let A' and A'i represent the A amplitudes, then their equations

are given by [37]

A1 equations:

As .Da F. + ±Jj A-jI, +I A'-We a.+e-ma

a °e a 2 efm

-1 yZmne O.j)mnin - QE,(eillfa) - Z mn(mijna)
e f mn

+E EZ f~itfi - Ymntme) (Imllae) (3.2)

A2 equations:

A',jD, = (jllab)+P.(ab) EA tj - P_(ij) EAajm + 1 A ' 1Vf a

a6 t M b 2 ef }ef b

e m. ef

+ , AWimn + P-(ij)P_(ab) E E Aa"efmb
mn m e

+P-(iab) j(irjIae) ( +beEAte )

- P)(i)EZ(1mlab) (mi+ A + P(j)P(ab) A.F b
m e eM 

%j
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+ -P.(ij) \' A(ejIlab) - P-..(ab) EA A(ijI11mb) (3.3)

The JF and A'- intermediates are defined by:

Fintermediates:

.;k. Ya~ E tema (3.4)
2 m

F; m Fim+ 1 te . (3.5)

A'- intermediates:

Wefab =(efllab) -P(ef)Zi (mfab) + ~r(n~

m2 mn

= vefab + I E rmf.(mn (Ia b) (3.6)
4mn

A'tjmn = (ii]Il mn) + P- (mn)ZEt' (ij11en) + -EZrmc(ef Ilij)

= A':jmn + 4 EZre,(efI11i1J (3.7)

A'ejib =(eiI11mb) +Ztf (ejI If b) -t (n I Imb)
f nl

n f

- jmb + 1 EZ tef (nIlfb) (3.8)
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W = im Ff -el tjV-I +1 E (ieIIfg) r/,
f an 0 f9

SP(rnn)_tfWii,, + P_(mn)yZZ (ioomn)tf (3.9)
f o f

Oqefa. = (efj1am) + Z :nt'f + Ztnfg I l y(amIlno)r
n 9 no

-,,),,,Wnfa, + P_(ef) : J(enllag)tf9n (3.10)

n n 9

with W given as

Wmbe!jt= (mbllej) nj(mnjjef) (3.11)
n f

For computational reasons, it turns out to be beneficial to define the G interme-

diates as

= _1 =f Zt n ,j (3.12)
mn f

1 i
=m El t ef (3.13)

These equations hold for all types of single determinantal reference functions be-

cause they explicitly include the non-Hartree-Fock terms. We can therefore follow

the same prescription as for the energies and show which terms axe needed for the A

equations of MBPT. In the following equations, we will only be deriving expressions

for use with semi-canonical orbitals.

First order A1 and A2 equations:



18

A'('D (3.14)

ab -' (ijllab) (3.15)

These equations look very familiar since they also define the first order T, and T2

amplitudes.

Second order A, and A2 equations:

a nfI(jf +2 ef Wej am+ Ae
nfj 2M ef m e m1Wl

-~~ ~ i mn(l)WV-(l)
2mn e

-Ztf~l)(inl~af) + Airn(O)(ef Iam) + Am~ 1)(eiIlma)
n~j 2M ef m e

- Z A mn (1) (mnIlie (3.16)
2mn eae

ab -f f ! ab ± ab ( ,jlmn + F.. (i) P-. (a b) Am 00) e ~m
2 ef 2mn m e

+ -Pij) P-a)jk 2 ~ P (aj b) A' MF I(eiIlab)

aa

m

A 'Z AY'(efI11ab) + A- A~(lmn
2 ff 2mn a l

+ P...(ij3)P-(ab) EE~ A~'-('(ej limb) + P..(i'j)P..(ab)A'('f,
m e a

± ji) <(ejllab) - P-(ab) E Aa 1 (i limb) (3.171)
C m
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These amplitudes are required to obtain MBPT(3) gradients. If we compare the

expressions for A(2) and t(2), and recalling that )' tl), we can see that the following

equation holds:

S(2) _a(
2 ) 't () +Yt''inafA =a t -'Jm + tnf( 1) ( i n ila f )  (3.18)

me nf

Similarly, comparing A42) and t(2) yields

A = t 2) + P (ij)P (ab)Aij()fJb (3.19)

Therefore, for MBPT(3) gradients, we need not iterate the A equations, but rather

take the second order T amplitudes and add several terms. This will lead to a more

efficient method of determining the A amplitudes which are needed later. Unfortu-

nately, such a simple solution for the third order A amplitudes is not possible due to

the order-by-order nature of the problem.

Third order A, and A2 equations (excluding triples):

x'(3)Da - r.3) + I) .. (2) - Z (2) (1)

ea A m +ef Vefam

e m m ef

( 2) )

EE(Am (2) -i(l) + Am(')W( 20

2 C ma c etoma)

1 1:1 (A fl(2) V-I)i + A mn(i), -2i

- ,1(efa) - Z- , (millna) (3.20)
ef mn

A'j(3)D a P...(ab)E~Aj(l)t(2)_ - (ab) Z: Atrn(1) -j(2)
Saab _ jm

em
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± Z(A,(2)c~i ± A -e)(b\+ A'\ os "osab+-'os' )b
ef fe

1 E (Amn(2)i) Amn(i ) 2)+2 Zn ab 1 ijmn ±, - ab jm(3n)

+ P-(j)P-(ab)ZZ Am ~ ae 0 3 ,nb)

m a

+ Fl ab) Z:(i I1ae) (2) -E m't(1

- .P...(j)imlab) ±3 E j')e

+ P (ij)P (ab) A' (2)y .,j1) + A ' (1 )

+ p_(ij) E A'e (2 )(ejlab) - P_ (ab) E A- (2)(iillmb) (3.21)
e m

Since we now have expressions for the t and A amplitudes obtained from the

solution of the CCSD and A equations, respectively, we can write the CCSD energy

gradient with respect to an external perturbation as

dE
d E D_, fq(x) + E IpqSpq + E r(pq, rs)(pqllrs)x (3.22)

= pq pq pqrs

with Dpq as the relaxed density, F(pq, rs) as the effective two-particle density, and Ipq

as the one-particle intermediate which maintains the orthonormality of the perturbed

orbitals. In this expression, the only pieces which depend on the perturbation are the

one- and two-electron integrals. These are the derivative AO integrals rotated to the

MO basis. Furthermore, it is advantageous to define fP(x) as

fp) = hpx + --(pmllqm}× (3.23)
m

which depend only on the AO derivative integrals. The MO derivative part of fpq

is accounted for in the formation of the relaxed density. The occupied-occupied and
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virtual-virtual blocks of the relaxed density are given by

D, - P+(ij)ZZ_ me-f - 1 j (3.24)

mel e

Dab = p(ab) Z: 1: ta Amn + 1P+(ab) EtaA (3.25)
4 mn e m

which constitute the only contributions for Hartree-Fock reference functions. How-

ever, for non-Hartree-Fock references, such as ROHF, we also have a contribution

to the occupied-virtual block of the relaxed density due to the response of the CC

amplitudes

1 + 1 E1tae IEta
Dai = 2 -A tm Am - j t m e

me me

1- i-m ! E ' ef mn i (3.26)

4 mn ef 4 mn ef

Evaluating each of the Dpq terms in an order-by-order fashion gives us the expressions

at each level of MBPT. Recall from our discussion of the ROHF-MBPT energies that

f# and fab are considered zeroth order while fai is first order. This applies to the

derivatives of these elements as well. Therefore, Dai will always be of order (n - 1)

while Dij or Dab will be of order n, where n is the order of MBPT.

Dpq for MBPT(2):

2 1 tae  P+ t)e(1) - (1)
Dab -- P+(b) a ' l)Am-(l) + -P+(ib) - -I('))r(1)

m ef e

I p (. 1:,E t-,fe (i)tfe (1) __ p+ (ij) te.()tj(i)-4 +,J1 ,., t.-m jmZ -, e (3 27)

:2) 1+ ab) 1: t a e ( 1) Am n ( 1) + m  1b Etaa a(1)) nMl)

4 mn e 2 m

1t e ( 1)be () 1 P a (1) b (1)

4 n e I.In
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D = -ta(l) + 2A (1

- ~l (3.29)

Dpq for MBPT(3):

1 Ite()Aml t ae (1)Ajm(2)~DO) 4 -P+() Z m +fim

2 P+ (i1 ) E (tI2e I +

-- P+(ij*) E + f sme
4 M 4f

-~+I~ Z (2)g~ + t (')A4 2)) (3.30)

D~~ (3'+a)E t(2)Am() +ta('Am(2

+-2P+(ab) E + 'b

P+(ab E E(ta (2) t b (1) +teM n2

+ 1-P+ (ab) E ta (2)tb (1) + 'A()(.1
2 m e

DO ~1 ta2) lAi(2) + 1 te()m'

2 2 2me

1 2 +21 (2) + 1 t I~ t 1 (3.32)

Dpq for SDQ-MBPT(4):

D 9 = -14(WEE (tie 3Ai(l) + tie (2)Ajm(2) + tie?,Am 3

1 4(ij ( lIm ef sm ef e
m ef

t P+ ( (t(3) Aj(1) +te(2)Av( 2 )+0 W(3
2 Z + +
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1 ( (3 )tef (1) +pe (2)Aim( 2 ) + tae ()Am3

= P+(ij) vim _jm +tm(ef im ef J

Ia)  1tP+(i) + t (3)\+n(2)A,( 2 ) + t "-)An(3)) (3.33)

mn e
abP(i) S et'A ' S e j 1 

m
()

2

1 (4 P+ (a (tae (3)tbe (1) + tae (2)hmn(2) +ae (1)\mn(3)'

-b 4P(a, 'n mn me mn "be + mn Abe)

2 m

tae(3 (~~3) tb (1 + ( t e 2)A n ) ta (1)Am(2))

4 m+a)E E(m mn ef be mn b

mn e

)a (3)tb (1) + :mA,(l) + (3 (3.34

1v'(3) + 1 Ai (3) ± (te (2)m() + te (1)Am(2))
a me

1- E t t (1) t e (1 ) A m (i ) -- 4" E ) n(1)t~n (1)ta (1)

m e 4 m n ef

14 E E An(I)ta (1)t(( 3
)

m n ef

1 t (3) + 1 +i(3~ E (2 )t (1 + t a() A (2))

- 1J~t ()t I~t () _11:1:tef (1)tef (1)ta (1)
-2 e am(1te()m 

1 ) - 4 mn e -ran in m

_I 1: 1: tm, lf (1)taf (1)te(1)j (3.35)

4mn ef n m 3

In all of the above expressions, the first-order A's have been substituted with the

equivalent first-order t amplitudes after giving each expression with the A's.

The intermediate Iq, which is a precursor of Ipq, is given by

Ipq - 2E fp' (Dr q + D ,)
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+ E [(prIjst)r(qr, st) + (rpjjst)r(rq, st) + (rsllpt)F(rs, qt)
rat

+ (rsjjtp)r(rs,tq)]) - E(prjqs)D',qi (3.36)

ra

which is generalized to account for the non-Hartree-Fock nature of the ROHF refer-

ence.

In addition to these terms, we need to account for the contribution to the gradient

arising from orbital response. This contribution can be obtained by solving the ROHF

coupled-perturbed HF (CPHF) equations [38]. For a correlated gradient calculation,

however, the CPHF equations are never actually solved, but are replaced with the

Z-vector equations [34]. The solution to these equations is added to D to form the

full relaxed density.
1-(orb-r.esp)

With DPQ as the contribution due to orbital response, these equations are

given by

E E DE)M (EMAI + A"", + A""AI + AI
E M

'(orb-reap) A2I+aaB

+ E (2 (Aa~a + A"OP)JJE2 \2A Mtal EAI)

E 2

2 M (A2A + A = -XAI - PXAI (3.37)
2 M

z (°Drb-rep) (AA)1 + + S Dorb-resP) A fo'

EMEAI EMIE2 ZaE2A1

E M E 2

Dorb-resp)AC" =A Xa 3.8
+ S S., M 2MA1 = -X (3.38)

2 M

(orb-resp) (Ata"1 + A+3333 + + Dorb-resp)A Aa4"
EM XEMII ZEMI-I] 

1  
E2 tE21I

E M E 2

+ 5O XM-.) , = (3.39)
2 M

where I, J, K,... refer to doubly occupied orbitals, A, B, C,.... refer to virtual orbitals,

and 1,2,... refer to open-shell (singly occupied) orbitals. The A matrix used in Eqns.
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(3.37) to (3.39) are defined as

Aooot = 2(PRIQS) - (PRJSQ) - (PSJRQ) + bQS fPR - bPRfQS (3.40)

A1330 = 2(PRIQS) - (PRISQ) - (PSIRQ) + bQs fPR - b5PRfQS (3.41)

A"00 = 2(PRIQS) + bQR3fps (3.42)

A derivation of these A matrix terms is given in Appendix B. These A matrix elements

differ from those for UHF in that various pieces of the a and # Fock matrices need

to be included.

Before progressing further, we must discuss the implications of the above expres-

sons on the use of semicanonical orbitals. These expressions have all been developed

in the canonical (standard) orbital basis. This was necessary since the partitioning

of the orbital space into doubly, singly, and unoccupied orbitals is only true for the

canonical orbitals. Rotating the orbitals to the semicanonical orbital basis effectively

mixes all the subspaces so that a clear partitioning is no longer possible.

The problem, therefore, is how to solve the CPHF equations if we are in the

semicanonical representation. Let us have

AUx = B (3.43)

represent the general matrix expression for the occupied-virtual part of the CPHF

equations using semicanonical orbitals. The occupied-occupied and virtual-virtual

parts can be constructed from existing quantities and knowledge of the occupied-

virtual part. Multiplying both sides by Z = XA - ', we can rewrite Eqn. (3.43)

as

XUX = ZB (3.44)

By solving for Z we can avoid explicitly solving for UX. For the elements of the A

matrix which consist only of integrals, we can use the integrals in the semicanonical

basis. Of course, to form the product Z of X and A - 1 , X also needs to be in the
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semicanonical basis. However, the addition of the Fock matrix elements must be done

in the canonical (standard) basis, since this is where the partitioning of the orbital

space is defined. For the product of X with these pieces, X is rotated to the canonical

basis

=LXLt (3.45)

where L is the unitary matrix which rotated the orbitals from the standard to semi-

canonical orbital basis and X represents X in the standard orbital basis. After

forming the increment Z product between X and the f pieces of the A matrix, this

increment is rotated back to the semicanonical basis. Therefore, in practice, we have

separated the A matrix into two pieces: the integral part and the Fock matrix part.

Additionally, we are able to solve the Z-vector equations without having to perform

a complete four-index transformation of the A matrix back to the standard orbital

basis. This transformation has been replaced by two-index transformations performed

at the appropriate times.

The Xi intermediates are given by

Xi = Ii"' - IL (3.46)

The Xai intermediates are only defined for non-redundant orbital rotations among

virtual and occupied spin-orbitals. Because of the nature of the ROHF reference, the

rotations among singly and doubly occupied orbitals need only be considered for/3

spin-orbitals, and rotations among singly and unoccupied (virtual) orbitals only for a

spin-orbitals. After solving the ROHF-CPHF equations, we have the last contribution

to D~g. This allows us to complete the construction of the Ipq intermediates

Iij = P -2 D D b- r e
a

) (eiI1mj) - 2E fei D (rbresp) (3.47)
e m e

Ia,= Ii, = I' - y: fir Dm-,,a P) (3.48)

lab = lab (3.49)
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The last term in Iij is only considered when j corresponds to an open-shell (singly

occupied) orbitals, as shown by b5 x.

Elements of the effective two-particle density matrix F, which are the coefficients

of the derivative two-electron integrals, are given by:

F(abcd) = 1P+(ab, cd) Vabcd (3.50)
8

F(ij, k1) = P+ (ij, kl)Vij kl (3.51)
8

F(ib,ja) 1 P+(Ia,jb)Vibi, 1 + (i,,b)  !P+( a, Aj (3.52)
.iP+(ia- P(iabb)t i (.52

1 1 1 e 8 J

r (ia b) = + - ,'Vm, n n8" 8' 16 mn 8 me

+-P(ab) T rjb(Qea - Z
e e

2 m e M.

F(ij,ka) = -- E E~~\ + Vikmtn

11 8t e 8 8M

++-(j P()Z k_, at - 1S b tAa (3.54)

1 1 1

r(ab,ci) 8ZA + 1 E A'8- EVceabte
8m m eb 8

S(ab) Vita P_()t (3.55)
m
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with the V intermediates defined by

Vmn1 2" -T (3.56)
ef

V 1bef E .n Z (3.57)
2 mn

Vibi. = E E Am (3.58)
2 m e

As with the CC and A equations, we must evaluate each of these two-particle

density matrix terms order-by-order. Before writing down each of the terms for each

order of MBPT, note that the g and V intermediates are a minimum of second order.

F intermediates for MBPT(2):

0(1) (ij, ab) r !zb(l) +± !A' 1) (.9
8 (b (3.59)

F intermediates for MBPT(3):

1 2) bd(.0
F(2)(ab, cd) = -P+(ab,cd)V (3.60)

8 ac

1 (!2) ( -1F(2)(ij, k1) = 8P+(ij, kl)V..kl (3.61)

F(2 (ib, ja) = 1P+(ia,jb)V(2) + (ia,jb)t W(AI ) (3.62)

4 8bj

(2)~ - 1 ab(2) A()
F2(jab) =- +r b 7L  (2) (3.63)

1 (, 1 )ea(1) 1F(z)(ij, ka) = - Zrea (3.64)

r (2)(ab, c 1 = 1  
a (1) + 1 1 te (')Am'(') (3.65)

8 e f 8D-MBT

IF intermediates for SDQ-MBPT(4):
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F3 (a b,cd) = 8 P,(a b,cd)Vbcd (3.66)

r (3)(iJ, kl) = 1 P,(ij, kl) V!31 t k(3.67)

r 3 (ib,ja) = !P+(ia,jb)VI -+(~ s b
4 8mec

Ib [t.(2)Aj(1) + ta(I)Aj(2)](.8

(3(1 iab(3) + Aij~ (3 + 1 ab (1)V(2)
r tjz, a) = j ab 1in rm m

8 8 T6 m6,

1~iy T abI (g!2) + Arn(1)te(1))

8 m c

1~.4jPa)~?~' (g(2) + E ~ 't) (3.69) (1
8 e me

r (3 )(j k1' = A((2),ea(l) + k(1 ),ia2
zj,) -~ E e :3 e gj)

e/

+ -(ii) f

- ~p_ ( - )g( 2 )tL(I) (.0

F(3)(b~i = !z )ab(l) + Ar(I) Tab (2))
8m

t (2Ami~O) + t IAi2

+( !p (iZ 2 ,). ta (1)
ceab, 4)+ m(j Ezm

8 ,
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- 1. ,(ab)g )tb (3.71)

In order to have gradients for full fourth-order, we need to include the contribu-

tions from T3 and also A3. The expression for A3 which is correct through MBPT(4)

is

i jk (2)Dnabc Z a ~ 1 (k~c
(abc lijk P(a/bc)P(ij/k) E A (')(ek Ibc) - P(ab/c)P(i/jk) E A (1)(Jkjjmc)

e m

+P(a/bc)P(i/jk)'(')(jkllbc) + P(ab/c)P(ij/k)"i (1Lk (3.72)

Recognizing some similar pieces between the expression between A32) and T32 ) we can

simplify to

A ijk(2 )Dabc tabc(2) . ( )

()Dabc =t + P(a/bc)P(i/jk)A (l)(jkbc) + P(ab/c)P(ij/k)A' (1)fck
abb (2 .. (1)

= t jk(2 ) + P(a/bc)P(i/jk)tl1)(jkjbc) + P(ab/c)P(ijk)t"O'f~k

(3.73)

where we have also used the equivalence between the first-order t's and A's. The

inclusion of triple excitations also leads to the following additional terms for the

relaxed density

AD!(tri ples) = Ajk (2) tabct2) (3.74)

efg mn

(4) (triples) = 1 E A Aff4o( 2)tbef (2) (.5
ab24 mnf aef mno (.5

D(3)(triples) = 1 1' E (A mni(2)tef (1) +mn(1) efa (2)

amn ef f

1 m(A ni(2)tef (1) tmn(1)te!a (2)
4 EE ,fa mn ± ef nmn (3.76)

mrs ef
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Additional terms also arise for some of the F intermediates. Specifically

F(3 (ij, ab)(triples) e E 2mz
em

1 e te (1)teab( 2) (3.77)
4 em 7 mS3

(3)(ijka)(triples) = (A i7(1)tefa (2) Ajk-(2) ef(1))
4ef m e j e m

1 (' f (g )tM efa (2) A jkm( 2)ef (1)( .
Sm k aef m(3.78)

ef m

1(3 (1mni(2)tae tmn()tebC (2)'\
F3 (ab, ci)(triples) (A 4b mn ()m

1 (mni(2)ae (1) tae ( )tebc , (3.79)

4 e mn ebc mn inn mn

Programming of these terms, in addition to the appropriate CPHF terms for

ROHF (derived in Appendix B), allow the analytic calculation of the energy gra-

dient. Since these equations are derived from the general CC and A expressions,

including the non-Hartree-Fock terms, the additional pieces from the CPHF allow

the direct implementation of the ROHF-CCSD gradients, which have been published

elsewhere [27]. The gradients for MBPT(2), MBPT(3), and CCSD are implemented

in the ACES II [33] ab initio program system.



CHAPTER 4

RESULTS OF ROHF-MBPT CALCULATIONS

In order to gain an understanding of how the ROHF-MBPT approach works in

practice, a number of different atomic and molecular systems are studied. The focus of

these studies is to observe how spin contamination (or lack of) in the UHF reference

affects the results. It will also be important to see how well ROHF performs on

systems which may or may not suffer from spin contamination. In the rest of the

chapter, we will examine the following problems:

1. Electron affinities and ionization potentials of first row atoms (B-F).

2. Structure and characterization of several spin contaminated diatomic and poly-

atomic molecules:

(a) CH 20 + H transition state (d) FCS
(b) CN (e) N2H
(c) Li3

4.1 Atomic Calculations

One of the first things we wish to examine is the difference between UHF and

ROHF for determining the electron affinities and first ionization potentials of the first

row atoms. To this end, we use three basis sets of increasingly better quality. These

are the "correlation consistent" basis sets of Dunning [39]. These basis sets follow

the progression that as the description of s and p space improves, a corresponding

32
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Table 4.1. UHF atomic energies for the ground state of the first row atoms and their
ions using the PVDZ basis set.

SCF MBPT(2) MBPT(3) SDQ(4) MBPT(4)
B- (3p) -24.4991843 -24.5464594 -24.5604404 -24.5643397 -24.5648663
B (2 p) -24.5299616 -24.5674982 -24.5810576 -24.5861892 -24.5865312
B+ (1S) -24.2345624 -24.2680974 -24.2820318 -24.2885273 -24.2885378
C- (4S) -37.6795011 -37.7482812 -37.7622148 -37.7643165 -37.7648067
C (3p) -37.6865444 -37.7396554 -37.7545104 -37.7586740 -37.7591232
C+ (2p) -37.2895279 -37.3321260 -37.3473327 -37.3532686 -37.3535455
N- (3 p) -54.2692744 -54.3698640 -54.3836453 -54.3852375 -54.3857122
N (4S) -54.3911146 -54.4634378 -54.4769727 -54.4790434 -54.4794748
N+ (3 p) -53.8804629 -53.9358715 -53.9508049 -53.9551823 -53.9555518
0- (2p) -74.7211942 -74.8632513 -74.8731035 -74.8741629 -74.8746738
O (3p) -74.7921661 -74.8958841 -74.9089220 -74.9104537 -74.9110503
0+ (4S) -74.3524680 -74.4239253 -74.4363601 -74.4383394 -74.4387234
F- (1S) -99.3659836 -99.5566556 -99.5579529 -99.5595439 -99.5601917
F (2p) -99.3752403 -99.5177561 -99.5271689 -99.5281917 -99.5290407
F+ (3p) -98.8004853 -98.9007679 -98.9126153 -98.9141213 -98.9147770
a SDQ(4) is SDQ-MBPT(4).

increase in the polarization functions should occur. These basis sets are a [3s2pld]

valence double zeta basis (PVDZ), a [4s3p2dlf] valence tripie zeta basis (PVTZ),

and a [5s4p3d2flg] valence quadruple zeta basis (PVQZ). All the atomic calculations

are performed by using spherical functions, i.e. the cartesian contaminants of the

d, f, and g functions are removed. The UHF energies for the first row atoms, and

their cations and anions, are shown in Tables 4.1 to 4.3; the ROHF energies are in

Tables 4.4 to 4.6. The differences between the atomic energies for the UHF and ROHF

references are in Tables 4.7 to 4.9. A comparison of the SCF results for UHF

and ROHF shows that the ROHF energies are always higher, which follows because

the ROHF reference is a restricted reference and because the lowest unrestricted

(UHF) result must be lower or equal in energy by the variational principal. For the

energies at the third and both fourth order levels of MBPT, the ROHF energies are

all slightly lower, except for F( 2P) with the PVDZ and PVQZ basis sets, since no such



34

Table 4.2. UHF atomic energies for the ground state of the first row atoms and their
ions using the PVTZ basis set.

SCF MBPT(2) MBPT(3) SDQ(4)a MBPT(4)
B- (3p) -24.5100311 -24.5767271 -24.5911231 -24.5943998 -24.5959395
B (2p) -24.5320678 -24.5833893 -24.5964003 -24.6008792 -24.6015718
B + (1S) -24.2366822 -24.2793439 -24.2918120 -24.2975397 -24.2976287
C- (4S) -37.6961487 -37.7960390 -37.8108438 -37.8121665 -37.8145090
C (3p) -37.6915692 -37.7672401 -37.7822139 -37.7856918 -37.7869203
C+ (2p) -37.2947464 -37.3536597 -37.3682976 -37.3734925 -37.3740887
N- (3p) -54.3038136 -54.4529887 -54.4680940 -54.4692338 -54.4724256
N (4S) -54.4006862 -54.5068109 -54.5209161 -54.5223322 -54.5240773
N+ ('P) -53.8901742 -53.9713094 -53.9863828 -53.9900874 -53.9910372
0- (2p) -74.7661931 -74.9770178 -74.9865150 -74.9875070 -74.9921297
O (3p) -74.8117566 -74.9659719 -74.9804662 -74.9816235 -74.9840964
0+ (4S) -74.3703743 -74.4786578 -74.4918371 -74.4932792 -74.4945240
F- (1S) -99.4242987 -99.7056911 -99.7026464 -99.7053271 -99.7117115
F (2p) -99.4055249 -99.6173738 -99.6275244 -99.6283434 -99.6318270
F+ (3p) -98.8302558 -98.9850719 -98.9986662 -98.9998199 -99.0015584
"SDQ(4) is SDQ-MBPT(4).

Table 4.3. UHF atomic energies for the ground state of the first row atoms and their
ions using the PVQZ basis set.

SCF MBPT(2) MBPT(3) SDQ(4)a MBPT(4)
B- (3p) -24.5156480 -24.6013072 -24.6159378 -24.6188769 -24.6209894
B (2p) -24.5329671 -24.6013403 -24.6145264 -24.6187957 -24.6196603
B + (1S) -24.2374671 -24.2960874 -24.3088602 -24.3144339 -24.3146148
C- (4S) -37.7036686 -37.8276158 -37.8423528 -37.8431689 -37.8465328
C (3p) -37.6933078 -37.7897908 -37.8047220 -37.8078789 -37.8094339
C+ (2p) -37.2964677 -37.3746496 -37.3894141 -37.3943442 -37.3950945
N- (3p) -54.3177573 -54.4991682 -54.5140060 -54.5146764 -54.5194247
N (4S) -54.4037180 -54.5349103 -54.5488291 -54.5498944 -54.5521796
N + (3P) -53.8931758 -53.9973488 -54.0124015 -54.0157919 -54.0169846
0- (2p) -74.7828574 -75.0353382 -75.0435681 -75.0442597 -75.0513951
0 (3P) -74.8172947 -75.0037462 -75.0181948 -75.0189823 -75.0222625
0 + (4S) -74.3756476 -74.5108266 -74.5238544 -74.5249742 -74.5265786
F- ('S) -99.4446198 -99.7777376 -99.7719363 -99.7751000 -99.7850545
F (2p) -99.4137701 -99.6659486 -99.6761440 -99.6765936 -99.6812561
F+ (3p) -98.8386639 -99.0278311 -99.0415320 -99.0423611 -99.0446002
'SDQ(4) is SDQ-MBPT(4).
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Table 4.4. ROHF atomic energies for the ground state of the first row atoms and
their ions using the PVDZ basis set.

SCF MBPT(2) MBPT(3) SDQ(4)- MBPT(4)
B- (3p) -24.4965182 -24.5462395 -24.5605960 -24.5644453 -24.5650042
B (2p) -24.5265909 -24.5673461 -24.5814411 -24.5864598 -24.5868398
C- (4S) -37.6786938 -37.7480836 -37.7622496 -37.7643871 -37.7648709
C (3 p) -37.6824179 -37.7393526 -37.7548043 -37.7588812 -37.7593576
C+ (2p) -37.2855906 -37.3319545 -37.3476953 -37.3535082 -37.3538165
N- (3 p) -54.2656755 -54.3700342 -54.3838976 -54.3853091 -54.3858099
N (4S) -54.3884142 -54.4631538 -54.4772032 -54.4792130 -54.4796415
N+ (3 p) -53.8752649 -53.9355580 -53.9511380 -53.9553884 -53.9557840
0- ('P) -74.7182444 -74.8634416 -74.8732315 -74.8741687 -74.8747018
O (3p) -74.7875131 -74.8959359 -74.9091628 -74.9105046 -74.9111211
0 + (4S) -74.3482550 -74.4236688 -74.4366790 -74.4385142 -74.4389005
F (2p) -99.3718619 -99.5179134 -99.5272832 -99.5281846 -99.5290511
F+ (3p) -98.7950288 -98.9007937 -98.9128445 -98.9141613 -98.9148338
aSDQ(4) is SDQ-MBPT(4).

Table 4.5. ROHF atomic energies for the ground state of the firct row atoms and
their ions using the PVTZ basis set.

SCF MBPT(2) MBPT(3) SDQ(4)a MBPT(4)
B- (3p) -24.5069886 -24.5767131 -24.5913669 -24.5945123 -24.5961324
B (2p) -24.5281466 -24.5835479 -24.5969163 -24.6011601 -24.6019312

C- (4S) -37.6950825 -37.7957407 -37.8108646 -37.8122589 -37.8145865
C (3p) -37.6867081 -37.7672302 -37.7826183 -37.7859050 -37.7872067

C + (2p) -37.2902724 -37.3538057 -37.3687486 -37.3737131 -37.3743689
N- (3p) -54.2989075 -54.4534292 -54.4685124 -54.4693451 -54.4726437
N (4S) -54.3973578 -54.5066112 -54.5211959 -54.5225128 -54.5242763
N+ (31I) -53.8843449 -53.9713577 -53.9867895 -53.9902651 -53.9912779
0- (2p) -74.7620804 -74.9774746 -74.9867466 -74.9875212 -74.9922332
o (3 P) -74.8056444 -74.9663199 -74.9808337 -74.9816974 -74.9842602
0+ (4S) -74.3658228 -74.4785794 -74.4921546 -74.4934216 -74.4946972
F (2p) -99.4009353 -99.6177769 -99.6277189 -99.6283477 -99.6318999
F+ (3p) -98.8236176 -98.9854- -98.9989867 -98.9998732 -99.0016813
aSDQ(4) is SDQ-MBPT(4).
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Table 4.6. ROHF atomic energies for the ground state of the first row atoms and
their ions using the PVQZ basis set.

SCF MBPT(2) MBPT(3) SDQ(4)' MBPT(4)
B- (3p) -24.5125729 -24.6013588 -24.6161815 -24.6189913 -24.6212011
B (2p) -24.5289645 -24.6016581 -24.6150615 -24.6190617 -24.6200218
C- (4S) -37.7022742 -37.8271465 -37.8423651 -37.8433248 -37.8466423
C (3p) -37.6882984 -37.7899382 -37.8051540 -37.8080915 -37.8097363
C + (2p) -37.2919347 -37.3749564 -37.3898206 -37.3945418 -37.3953631
N- (3p) -54.3121834 -54.4997005 -54.5145026 -54.5148154 -54.5197210
N (4S) -54.4001759 -54.5347595 -54.5491231 -54.5500897 -54.5523924
N+ (3p) -53.8873215 -53.9975898 -54.0128115 -54.0159462 -54.0172144
0- (2p) -74.7783733 -75.0359181 -75.0438259 -75.0442689 -75.0515426
O (3p) -74.8108436 -75.0042248 -75.0185706 -75.0190470 -75.0224441
0+ (4S) -74.3711469 -74.5109057 -74.5241680 -74.5251023 74.5267424
F (2p) -99.4089519 -99.6664597 -99.6763438 -99.6765916 -99.6813461
F+ (3p) -98.8318860 -99.0283812 -99.0418538 -99.0424016 -99.0447278
a SDQ(4) is SDQ-MBPT(4).

Table 4.7. Atomic energy differences (EUHF - EROHF) for the ground state of the first
row atoms and their ions using the PVDZ basis set.

SCF MBPT(2) MBPT(3) SDQ(4)a MBPT(4)
B- (3p) -0.0026661 -0.0002199 0.0001556 0.0001056 0.0001379
B (2p) 0.0033707 -0.0001521 0.0003835 0.0002706 0.0003086
C- (4S) -0.0008073 -0.0001976 0.0000348 0.0000706 0.0000642
C (3p) -0.0041265 -0.0003028 0.0002939 0.0002072 0.0002344
C + (2p) -0.0039373 -0.0001715 0.0003626 0.0002396 0.0002710
N- (3p) -0.0035989 0.0001702 0.0002523 0.0000716 0.0000977
N (4S) -0.0027004 -0.0002840 0.0002305 0.0001696 0.0001667

N + (3p) -0.0051980 -0.0003135 0.0003331 0.0002061 0.0002322
0- (2p) -0.0029498 0.0001903 0.0001280 0.0000058 0.0000280
0 (3p) -0.0046530 0.0000518 0.0002408 0.0000509 0.0000708
0 + (4S) -0.0042130 -0.0002565 0.0003189 0.0001748 0.0001771
F (2p) -0.0033784 0.0001573 0.0001143 -0.0000071 0.0000104

F+ (3p) -0.0054565 0.0000258 0.0002292 0.0000400 0.0000568
aSDQ(4) is SDQ-MBPT(4).
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Table 4.8. Atomic energy differences (EuHF - EROHF) for the ground state of the first
row atoms and their ions using the PVTZ basis set.

SCF MBPT(2) MBPT(3) SDQ(4)' MBPT(4)
B- (3p) -0.0030425 -0.0000140 0.0002438 0.0001125 0.0001929
B (2p) -0.0039212 0.0001586 0.0005160 0.0002809 0.0003594
C- (4S) -0.0010662 -0.0002983 0.0000208 0.0000924 0.0000775
C (3p) -0.0048611 -0.0000099 0.0004044 0.0002132 0.0002864
C+ (2P) -0.0044740 0.0001460 0.0004510 0.0002206 0.0002802
N- (3p) -0.0049061 0.0004405 0.0004184 0.0001113 0.0002181
N (4S) -0.0033284 -0.0001997 0.0002798 0.0001806 0.0001990
N+ (3p) -0.0058293 0.0000483 0.0004067 0.0001777 0.0002407
0- (2P) -0.0041127 0.0004568 0.0002316 0.0000142 0.0001035
O (3p) -0.0061122 0.0003480 0.0003675 0.0000739 0.0001638
0+ (4S) -0.0045515 -0.0000784 0.0003175 0.0001424 0.0001732
F (2p) -0.0045896 0.0004031 0.0001945 0.0000043 0.0000729
F+ (3p) -0.0066382 0.0003733 0.0003205 0.0000533 0.0001229
a SDQ(4) is SDQ-MBPT(4).

Table 4.9. Atomic energy differences (EUHF - EROHF) for the ground state of the first
row atoms and their ions using the PVQZ basis set.

SCF MBPT(2) MBPT(3) SDQ(4)a MBPT(4)
B- (3 p) -0.0030751 0.0000516 0.0002437 0.0001144 0.0002117
B (2p) -0.0040026 0.0003178 0.0005351 0.0002660 0.0003615
C- (4S) -0.0013944 -0.0004693 0.0000123 0.0001559 0.0001095
C (3p) -0.0050094 0.0001474 0.0004320 0.0002126 0.0003024
C+ (2p) -0.0045330 0.0003068 0.0004065 0.0001976 0.0002686
N- (3p) -0.0055739 0.0005323 0.0004966 0.0001390 0.0002963
N (4S) -0.0035421 -0.0001508 0.0002940 0.0001953 0.0002128
N+ (3p) -0.0058543 0.0002410 0.0004100 0.0001543 0.0002298
0- (2 P) -0.0044841 0.0005799 0.0002578 0.0000092 0.0001475
0 (3P) -0.0064511 0.0004786 0.0003758 0.0000647 0.0001816
0+ (4S) -0.0045007 0.0000791 0.0003136 0.0001281 0.0001638
F (2P) -0.0048182 0.0005111 0.0001998 -0.0000020 0.0000900
F+ (3p) -0.0067779 0.0005501 0.0003218 0.0000405 0.0001276
aSDQ(4) is SDQ-MBPT(4).
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variational primcipal applies for perturbation theory. At the MBPT(2) level, we see

that improving the basis causes the ROHF-MBPT(2) energies to become lower than

the UHF-MBPT(2) energies. With the PVDZ basis, most of the ROHF-MBPT(2)

energies are higher than UHF-MBPT(2). With the PVTZ basis, ROHF-MBPT(2)

energies are lower except for B-, C-, C, N, and 0+. The PVQZ basis results show

that UHF-MBPT(2) energies are lower only for C- and N. If a larger basis set in this

series were available ("PVPZ"), perhaps even these last two atomic systems would

be lower for ROHF-MBPT(2).

The differences between these energies give us the electron affinities (EA) and

ionization potentials (IP) for the atoms. The ionization potentials using the UHF

reference are shown in Table 4.10 while the ROHF results are in Table 4.11. For

reference, the experimental values are presented in both tables. The first thing to

note is that at the SCF level, the value of the IP is essentially invariant to basis set.

This is not surprising since these basis sets have fundamentally the same ability to

describe the orbitals in the atomic environment. Compared to experiment, the SCF

results are not very good, although the UHF values are generally better, all being

higher by 0.01-0.1 eV. Upon introduction of correlation, we see the differences between

the basis sets arise. With both UHF and ROHF, the larger basis gives a larger value

for each IP. In fact, the UHF and ROHF results now differ by no more than ; 0.01

eV. The PVDZ results all underestimate the IP's and are particularly poor for 0

and F. The PVTZ basis gives excellent agreement for B, C, and N, and improves the

results for 0 and F. The largest basis, PVQZ, actually leads to an overestimation of

the IP's for B, C, and N, but further improves the 0 and F IP's.

Given the different nature of the two references, it is important to understand why

they should give essentially the same values for the IP's. This agreement can be best

understood by examining the degree of spin contamination in the UHF reference. The
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Table 4.10. UHF ionization potentials (electron volts) for the first row atoms using
several basis sets.

SCF MBPT(2) MBPT(3) SDQ(4)' MBPT(4) Experiment'

PVDZ basis
B 8.038 8.147 8.137 8.100 8.109 8.298
C 10.803 11.090 11.080 11.032 11.036 11.260
N 13.896 14.356 14.318 14.255 14.257 14.534
o 11.965 12.843 12.859 12.847 12.853 13.618
F 15.640 16.789 16.723 16.710 16.715 17.422

PVTZ basis

B 8.038 8.274 8.288 8.254 8.271 8.298
C 10.798 11.254 11.263 11.217 11.234 11.260
N 13.892 14.572 14.546 14.483 14.505 14.534
o 12.011 13.261 13.296 13.289 13.322 13.618
F 15.654 17.206 17.112 17.103 17.151 17.422

PVQZ basis

B 8.041 8.306 8.318 8.282 8.301 8.298
C 10.799 11.297 11.301 11.253 11.275 11.260
N 13.893 14.628 14.597 14.534 14.564 14.534
o 12.018 13.413 13.451 13.443 13.488 13.618
F 15.650 17.364 17.269 17.258 17.324 17.422
aSDQ(4) is SDQ-MBPT(4).
bReference [40].
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Table 4.11. ROHF ionization potentials (electron volts) for the first row atoms using
several basis sets.

SCF MBPT(2) MBPT(3) SDQ(4)' MBPT(4) Experiment'

PVDZ basis

B 7.947 8.143 8.147 8.107 8.117 8.298
C 10.798 11.086 11.078 11.031 11.035 11.260
N 13.964 14.357 14.315 14.254 14.255 14.534
o 11.953 12.851 12.857 12.844 12.850 13.618
F 15.697 16.793 16.720 16.709 16.714 17.422

PVTZ basis

B 7.931 8.278 8.302 8.262 8.281 8.298
C 10.788 11.250 11.262 11.216 11.234 11.260
N 13.960 14.565 14.542 14.483 14.504 14.534
o 11.968 13.272 13.298 13.287 13.322 13.618
F 15.710 17.207 17.109 17.102 17.149 17.422

PVQZ basis

B 7.932 8.315 8.332 8.289 8.311 8.298
C 10.786 11.292 11.302 11.253 11.276 11.260
N 13.956 14.617 14.594 14.535 14.563 14.534
o 11.965 13.424 13.453 13.441 13.489 13.618
F 15.703 17.363 17.265 17.257 17.323 17.422
'SDQ(4) is SDQ-MBPT(4).
bReference [40].
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Table 4.12. UHF spin multiplicities at the SCF and M' ,) levels of theory, with
three different basis sets.

SCF MBPT(2)
PVDZ PVTZ PVQZ PVDZ PVTZ PVQZ

B- (3 P) 3.0038559 3.0058750 3.0067849 3.0019841 3.0034223 3.0041740
B ( 2P) 2.0074386 2.0103563 2.0111184 2.0039144 2.0060088 2.0066251
B+ ('S) 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
C- (48) 4.0009071 4.0015236 4.0026212 4.0006028 4.0010860 4.0019862
C (3P) 3.0042068 3.0060185 3.0067453 3.0021681 3.0034322 3.0040167
C + ( 2P) 2.0054362 2.0065773 2.0066579 2.0026331 2.0034133 2.0034809
N- (3p) 3.0028757 3.0058363 3.0093850 3.0014628 3.0035263 3.0063672
N (48) 4.0020148 4.0030439 4.0037057 4.0011783 4.0019160 4.0024484
N + ( 3 p) 3.0036957 3.0045905 3.0046566 3.0017814 3.0023880 3.0024623
0- ( 2P) 2.0022867 2.0046215 2.0065766 2.0009847 2.0024349 2.0039108
O (3p) 3.0029098 3.0047962 3.0056704 3.0014571 3.0026621 3.0033193
0+ (48) 4.0021732 4.0027121 4.0027950 4.0011450 4.0015283 4.0016230
F- (1S) 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
F (2P) 2.0020049 2.0034116 2.0039139 2.0008289 2.0016005 2.0019395
F+ (3P) 3.0024791 3.0033791 3.0035304 3.0011390 3.0016529 3.0017681

average multiplicity' at each level of theory with each basis set is given in Tables 4.12

to 4.15. The first and most important thing to note is that the UHF reference is

hardly contaminated. This is the principal reason why the UHF and ROHF results

are the same. However, there are some interesting things to note about the behavior

of the spin contamination. First, as the basis set is improved, the multiplicity wors-

ens. This is contrary what might have been expected, but is not surprising when one

considers that the contaminating excited states are better described (that is, have a

lower energy) in the larger basis sets, enhancing their contribution to an erroneous

multiplicity. Second, the contamination is decreased with every increase in the level

of theory. This is generally expected (but cannot be expected rigorously) since fur-

ther inclusion of correlation provides a better description of the wavefunction, which

'It is important to point out how the value for S' is determined. Handy, et. al. [20] use a non-
variational expectation value expression (Eqn. (30) of reference [201). McDouall and Schlegel [19]
use an expectation value. Our approach is to calculate S2 via the formula (0IS2I0(n)), where n is
the same as for MBPT(n). Details of this formula can be found in reference [13].
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Table 4.13. UHF spin multiplicities at the MBPT(3) level of theory, with three
different basis sets, with and without inclusion of T1 .

PVDZ PVTZ PVQZ
No T With Ti No T With Ti No T1  With Ti

B- (3P) 3.0012158 3.0008845 3.0023897 3.0016952 3.0030456 3.0021926
B (2P) 2.0024497 2.0017654 2.0042387 2.0029277 2.0048434 2.0032741
B+ (iS) 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
C- (4S) 4.0004111 4.0003394 4.0007839 4.0006482 4.0014801 4.0012863
C (3p) 3.0013159 3.0009900 3.0023485 3.0016804 3.0028691 3.0020324
C + (2 P) 2.0015479 2.0010980 2.0022519 2.0014874 2.0023661 2.0015018
N- (3p) 3.0009856 3.0006872 3.0026453 3.0019469 3.0050781 3.0039394
N (4S) 4.0007531 4.0006005 4.0013349 4.0010182 4.0017713 4.0013591
N+ (3p) 3.0010298 3.0007629 3.0015491 3.0010642 3.0016537 3.0010962
0- (2P) 2.0006341 2.0004104 2.0017604 2.0012188 2.0030096 2.0022098
O (3p) 3.0009340 3.0006921 3.0018710 3.0013741 3.0024260 3.0018076
0+ (4S) 4.0006897 4.0005300 4.0010046 4.0007313 4.0011070 4.0007859
F (iS) 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
F (2P) 2.0005089 2.0003402 2.0010830 2.0007229 2.0013651 2.0009293
F+ (3P) 3.0006838 3.0005014 3.0010848 3.0007476 3.0011993 3.0008102
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Table 4.14. UHF spin multiplicities at the SDQ-MBPT(4) level of theory, with three
different basis sets, with and without inclusion of T1.

PVDZ PVTZ PVQZ
No T1  With T, No T1  With T No T1  With T

B- (3p) 3.0008994 3.0003643 3.0019171 3.0008269 3.0024940 3.0011806
B (2p) 2.0018786 2.0007018 2.0034774 2.0013286 2.0040576 2.0015444
B+ (1S) 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
C- (4S) 4.0001781 4.0003074 4.0005927 4.0003649 4.0011398 4.0007966
C (3p) 3.0009710 3.0004196 3.0018584 3.0008014 3.0023282 3.0010291
C + (2 P) 2.0011529 2.0004029 2.0018008 2.0006023 2.0019325 2.0006157
N- (3p) 3.0007964 3.0003459 3.0022323 3.0011559 3.0043890 3.0025767
N (4S) 4.0005615 4.0002834 4.0010396 4.0005181 4.0014083 4.0007416
N+ (3p) 3.0007453 3.0003020 3.0012037 3.0004623 3.0013169 3.0004897
0- (2P) 2.0005134 2.0001975 2.0014885 2.0007022 2.0025943 2.0014054
O (3p) 3.0007193 3.0003460 3.0015151 3.0007661 3.0019994 3.0010733
0+ (4S) 4.0005047 4.0002290 4.0007683 4.0003401 4.0008673 4.0003818
F- ('S) 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
F (2p) 2.0003974 2.0001589 2.0008884 2.0003821 2.0011360 2.0005255
F+ (3P) 3.0005083 3.0002324 3.0008561 3.0003698 3.0009654 3.0004150
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Table 4.15. UHF spin multiplicities at the MBPT(4) level of theory, with three
different basis sets, with and without inclusion of T1.

PVDZ PVTZ PVQZ
No T1  With T No T1  With T No T1  With T,

B- ( 3P) 3.0008848 3.0003606 3.0018628 3.0007995 3.0024218 3.0011422
B (2P) 2.0018544 2.0007012 2.0034132 2.0013125 2.0039766 2.0015239
B+ ('S) 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
C- (4S) 4.0001766 4.0003077 4.0005970 4.0003707 4.0008061 4.0011510
C (3p) 3.0009593 3.0004137 3.0018182 3.0007800 3.0022742 3.0010008
C + (2P) 2.0011382 2.0004022 2.0017663 2.0005934 2.0018910 2.0006041
N- (3P) 3.0007822 3.0003394 3.0021698 3.0011232 3.0042786 3.0025133
N (4S) 4.0005584 4.0002778 4.0010275 4.0005112 4.0013881 4.0007293
N + (3p) 3.0007358 3.0002973 3.0011759 3.0004478 3.0012829 3.0004722
0- (2P) 2.0005007 2.0001909 2.0014284 2.0006629 2.0024913 2.0013310
O (3P) 3.0007079 3.0003369 3.0014686 3.0007336 3.0010239 3.0010239
0+ (4S) 4.0004999 4.0002229 4.0007540 4.0003312 4.0008481 4.0003701
F- (1S) 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
F (2P) 2.0003885 2.0001524 2.0008487 2.0003519 2.0010794 2.0004802
F+ (3P) 3.0004998 3.0002243 3.0008265 3.0003481 3.0009280 3.0003878
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ultimately has to become an eigenfunction of spin in the limit of full configuration

interaction (CI). Third, the effect of including T in determining the multiplicity is

relatively significant. For a UHF reference function, the T part of the wavefunction

becomes non-zero at MBPT(3). This leads to a further improvement in the multi-

plicity and is continued at fourth order. From the coupled-cluster viewpoint, it is

important to include T1 in the evaluation of S 2.

If we now turn our focus to the electron affinities, we see that these basis sets have

substantial problems. The electron affinities for the PVDZ, PVTZ, and PVQZ basis

sets for both UHF and ROHF are shown in Table 4.16 and Table 4.17, respectively.

In general, differences between UHF and ROHF results at the correlated level are

not greater than ; 0.02 eV, and most often agree to within 0.005 eV. In addition,

at the SCF level the ROHF results are better than the UHF results with all the

basis sets. Focussing on each basis set in turn, we see that both ROHF and UHF

fail to show that any of the atoms have a positive electron affinity at the SCF level

with the PVDZ basis. Qualitatively this is only correct for N. The ROHF-SCF EA's,

however, are a qualitative improvement over UHF since they give a less negative

EA for B, C, 0, and F and a larger negative EA for N. In going to the correlated

level, both references show improvement. However, even at MBPT(4), the EA's are

qualitatively incorrect for both B and 0. Moving to the PVTZ basis, the SCF results

again parallel those for PVDZ with respect to the UHF/ROHF differences. At the

SCF level, there is now qualitative agreement for C, N, and F, while B and 0 are still

incorrect. At the correlated level, we once again see marked improvement over the

SCF level. Oxygen is now predicted to have a positive EA. Boron, however, is still

qualitatively incorrect. Another important note is that the best quantitative results

are given by MBPT(2) rather than MBPT(4). With the PVQZ basis, the SCF results

are quantitatively better than PVTZ, but qualitatively the same in that they both fail

to predict a positive EA for B and 0. At the correlated level, we see again substantial
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Table 4.16. UHF electron affinities (electron volts) for the first row atoms using
several basis sets.

SCF MBPT(2) MBPT(3) SDQ(4)a MBPT(4) Experimentb

PVDZ basis

B -0.837 -0.572 -0.561 -0.595 -0.590 0.277
C -0.192 0.235 0.210 0.154 0.155 1.2629
N -3.315 -2.546 -2.540 -2.553 -2.551 Not stable
o -1.931 -0.888 -0.975 -0.988 -0.990 1.461125
F -0.252 1.059 0.838 0.853 0.848 3.399

PVTZ basis

B -0.600 -0.181 -0.144 -0.176 -0.153 0.277
C 0.125 0.784 0.779 0.720 0.751 1.2629
N -2.636 -1.465 -1.437 -1.445 -1.406 Not stable
O -1.240 0.301 0.165 0.160 0.219 1.461125
F 0.511 2.403 2.044 2.095 2.174 3.399

PVQZ basis

B -0.471 -0.001 0.038 0.002 0.036 0.277
C 0.282 1.029 1.024 0.960 1.010 1.2629
N -2.339 -0.973 -0.948 -0.958 -0.891 Not stable
O -0.937 0.860 0.690 0.688 0.793 1.461125
F 0.839 3.042 2.607 2.681 2.825 3.399
aSDQ(4) is SDQ-MBPT(4).
bReference [40].
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Table 4.17. ROHF electron affinities (electron volts) for the first row atoms using
several basis sets.

SCF MBPT(2) MBPT(3) SDQ(4) a MBPT(4) Experimentb

PVDZ basis

B -0.818 -0.574 -0.567 -0.599 -0.594 0.277
C -0.101 0.238 0.203 0.150 0.150 1.2629
N -3.340 -2.534 -2.539 -2.555 -2.553 Not stable
O -1.885 -0.884 -0.978 -0.989 -0.991 1.461125
F -0.160 1.054 0.835 0.853 0.847 3.399

PVTZ basis

B -0.576 -0.186 -0.151 -0.181 -0.158 0.277
C 0.228 0.776 0.769 0.717 0.745 1.2629
N -2.679 -1.447 -1.434 -1.447 -1.405 Not stable
O -1.185 0.304 0.161 0.158 0.217 1.461125
F 0.636 2.392 2.039 2.095 2.172 3.399

PVQZ basis

B -0.446 -0.008 0.030 -0.002 0.032 0.277
C 0.380 1.012 1.013 0.959 1.004 1.2629
N -2.394 -0.954 -0.942 -0.960 -0.889 Not stable
O -0.884 0.862 0.687 0.686 0.792 1.461125
F 0.971 3.028 2.601 2.681 2.822 3.399
'SDQ(4) is SDQ-MBPT(4).
bReference [401.
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improvement over the SCF results and at the MBPT(4) level we now have qualitative

agreement for all atoms.

The poor performance of these basis sets to quantitatively (and sometimes quali-

tatively) predict the EA's of B-F can be traced easily to the lack of diffuse functions

in the valence space. Each improvement of these basis sets is designed to give better

results in a molecular environment where emphasis is placeu on effectively describing

the regions of space near the nuclei. For determining EA's, however, more emphasis

needs to be placed on regions of space further from the nuclei. Dunning and Hay [41]

recommend the addition of a single diffuse p function which is found to significantly

improve the performance of their DZP basis sets in predicting electron affinities. The

recommended p function was added to each of the basis sets to create augmented

basis sets termed PVDZ+, PVTZ+, and PVQZ+. These basis sets are used in cal-

culations on the neutral atoms and their anions. In general, we see the same trends

in the energies as with the unaugmented basis sets. The exceptions do not follow

any particular trend with increasing basis set size. With the PVQZ+ basis set, all

the ROHF correlated energies are lower than their UHF counterparts, except for the

SDQ-MBPT(4) energy for F (2P). In the PVDZ+ basis, the energies for the N- (3P)

are reversed against the trend of UHF-MBPT energies being lower. The difference

between the UHF-MBPT and ROHF-MBPT energies for this anion are also larger

than most of the differences. This is due to the poor description which UHF gives

for this anion, as reflected by its significant spin contamination (Table 4.18). While

the multiplicities with the augmented basis sets follow the same trends as for the

unaugmented bases, the N- result is very different. It is interesLing to note that this

severe contamination occurred from the addition of a single diffuse p function. This

probably follows from the important additional freedom provided by this function

which causes a large disparity in the spatial distribution of the a electrons and hence
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Table 4.18. UHF multiplicities for N- at several levels of theory using the PVDZ+,
PVTZ+, and PVQZ+ basis sets.

SCF MBPT(2) MBPT(3)
No T With T,

PVDZ+ 3.1958594 3.1807852 3.1734463 3.1522835
PVTZ+ 3.1817883 3.1671957 3.1605805 3.1366364
PVQZ+ 3.1909866 3.1760152 3.1692977 3.1425726

SDQ(4)a MBPT(4)
No T With T No T1  With T

PVDZ+ 3.1668339 3.1279970 3.1659764 3.1281129
PVTZ+ 3.1549507 3.1118335 3.1539288 3.1119625
PVQZ+ 3.1636241 3.1158145 3.1625191 3.1159292
aSDQ(4) is SDQ-MBPT(4).

lead to large spin contamination. However, without additional data it is difficult to

conclusively ascribe this result to this idea.

The effects of the additional p function on the atomic electron affinities can be seen

in Tables 4.19 and 4.20. With the PVDZ+ basis, there is now qualitative agreement

for C, N, and F at the SCF level, while the PVDZ basis failed for this. As with the

PVDZ basis, the ROHF results are different from the UHF results in the direction

toward agreement with experiment. With the PVTZ+ and PVQZ+ bases, we see

the same qualitative behavior as with their unaugmented counterparts. However, the

additional p function significantly improves the quantitative agreement. The EA's for

C and F are much higher than for the unaugmented bases, with the most gain seen

for the PVDZ+ basis. In addition, even though still qualitatively wrong for B and 0

at the SCF level, the magnitude of the error has been remarkably decreased. Upon

introduction of correlation, the EA's come significantly closer to the experimental

values. As with the first basis sets, the MBPT(2) results are higher and closer to

experiment. The differences between MBPT(2) and MBPT(4) with the augmented

bases, however, are about half that of the differences for the unaugmented bases.
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Table 4.19. UHF electron affinities for the first row atoms using several basis sets
augmented with a single diffuse p function.

SCF MBPT(2) MBPT(3) SDQ(4) a MBPT(4) Experimentb

PVDZ+ basis

B -0.386 -0.031 0.009 -0.015 -0.001 0.277
C 0.368 0.939 0.934 0.886 0.903 1.2629
N -1.888 -1.085 -1.070 -1.024 -1.000 Not stable
O -0.616 0.949 0.706 0.788 0.888 1.461125
F 1.194 3.165 2.637 2.868 3.011 3.399

PVTZ+ basis

B -0.348 0.118 0.167 0.137 0.167 0.277
C 0.402 1.143 1.141 1.081 1.125 1.2629
N -1.861 -0.827 -0.812 -0.759 -0.705 Not stable
O -0.603 1.231 0.968 1.019 1.165 1.461125
F 1.171 3.442 2.860 3.054 3.259 3.399

PVQZ+ basis

B -0.321 0.184 0.231 0.196 0.236 0.277
C 0.430 1.233 1.227 1.162 1.222 1.2629
N -1.835 -0.714 -0.695 -0.635 -0.565 Not stable
O -0.592 1.385 1.122 1.159 1.333 1.461125
F 1.168 3.599 3.011 3.185 3.425 3.399
aSDQ(4) is SDQ-MBPT(4).

bReference [40].
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Table 4.20. ROHF electron affinities for the first row atoms using several basis sets
augmented with a single diffuse p function.

SCF MBPT(2) MBPT(3) SDQ(4) a MBPT(4) Experiment'

PVDZ+ basis

B -0.345 -0.028 0.005 -0.017 -0.003 0.277
C 0.465 0.942 0.927 0.882 0.898 1.2629
N -2.097 -0.909 -0.925 -0.905 -0.848 Not stable
O -0.587 0.945 0.695 0.785 0.888 1.461125
F 1.288 3.162 2.635 2.869 3.012 3.399

PVTZ+ basis

B -0.307 0.115 0.160 0.134 0.164 0.277
C 0.511 1.134 1.130 1.078 1.119 1.2629
N -2.048 -0.603 -0.619 -0.619 -0.530 Not stable
O -0.563 1.230 0.961 1.017 1.166 1.461125
F 1.297 3.432 2.855 3.054 3.257 3.399

PVQZ+ basis

B -0.282 0.178 0.224 0.194 0.234 0.277
C 0.535 1.216 1.216 1.161 1.217 1.2629
N -2.030 -0.449 -0.463 -0.473 -0.363 Not stable
O -0.552 1.386 1.118 1.158 1.335 1.461125
F 1.300 3.586 3.006 3.185 3.422 3.399
aSDQ(4) is SDQ-MBPT(4).
bReference [40].
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The conclusion which can be drawn from these atomic calculations is that no

significant differences exist between use of the UHF or ROHF references. This can be

anticipated by noting that the UHF reference has essentially no spin contamination.

The significant errors between experimental and calculated electron affinities can be

directly connected to the basis set. Even a small improvement in the basis (addition

of a single diffuse p function) leads to a drastic improvement in the computed EA's.

4.2 The CH9 O + H transition state

The addition of hydrogen to formaldehyde is a reaction which has been studied

by McDouall and Schlegel [19] using projected MBPT(2), i.e. MP2 (PMP2) gradient

methods, which eliminate the first (quartet) contaminant. In this work, we examined

the geometry of the transition state at the MBPT(2) level of theory. These results,

and the corresponding PMP2 results, are shown in Table 4.21. We see that the

geometries for all three methods are similar. The barrier height for this reaction is

not known experimentally, so we shall use the ROHF-CCSD result as our figure of

merit. The UHF-MBPT(2) barrier height is 27.0 kcal/mol (11.2 kcal/mol above the

ROHF-CCSD result), while the PMPn' result of McDouall and Schlegel improves the

UHF-MBPT(2) result fairly well, reducing the barrier height to 22.2 kcal/mol. The

ROHF-MBPT(2) result is better still, yielding a barrier of 19.2 kcal/mol, only 3.4

kcal/mol above the ROHF-CCSD result. The is further improved as one goes to higher

levels of perturbation theory, with the full MBPT(4) result only 1.8 kcal/mol above

our best estimate. It is interesting to note that inclusion of triples at MBPT(4) causes

'The PMPn energy is determined at the PMP2 geometry with all contaminants eliminated. The
barrier height reported in [19] used the frozen core MP2 energy for the C1120 fragment and the all-
electron MP2 energy for the transition state. The barrier reported here corrects this error; Schlegel,
If. B., personal communication, June 1991.
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Table 4.21. Geometry and barrier heights for the transition state of the CH 20 +
H --- CH 2OH addition reaction using the 6-31G* basis set.

UHF-MBPT(2) PMP2 ROHF-MBPT(2)
Structure'

R(C-O) 1.230 1.249 1.260
R(C-H) 1.097 1.096 1.096
R(O-H) 1.422 1.464 1.422

0(H-C-H) 116.63 117.38 117.67
0(H-O-C) 120.93 118.51 119.59
0(X-C-O) 177.31 176.66 176.53

Barrier(kcal/mole)b

UHF PMPn ROHF
MBPT(2) 27.0 22.2 19.2
MBPT(3) 21.8 18.8

SDQ-MBPT(4) 21.5 18.0
MBPT(4) 23.3 17.6

CCSD 16.1 15.8
aBond lengths are in Angstroms; angles are in degrees.
bAll barrier heights were determined using the optimized MBPT(2) geometries.
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Table 4.22. Optimized geometriesa for CN and CN- using the PVDZ and PVTZ
basis sets and UHF multiplicities.

PVDZ PVTZ
SCF MBPT(2) CCSD SCF MBPT(2) CCSD

CN- (RHF) 1.162 1.204 1.192 1.151 1.184 1.171
CN (UHF) 1.162 1.138 1.183 1.150 1.123 1.163
CN (ROHF) 1.139 1.210 1.184 1.129 1.187 1.164
UHF multiplicity 2.337 2.233 2.043 2.302 2.201 2.041
'Bond lengths are in A.

the barrier to rise for UHF, while for ROHF the barrier continues to decrease. ROHF-

MBPT provides an improved result over PMP2 for this system at the MBPT(2) level

and also provides improved energies at higher orders of MBPT.

4.3 The Cyano (CN) Radical

This radical has long been known to be spin contaminated and identified as a

failure of UHF based MBPT (42]. For this reason, it provides an excellent example

for comparing ROHF and UHF based MBPT methods. The geometry of CN was

optimized at the SCF, MBPT(2), and CCSD levels using the PVDZ and PVTZ basis

sets. The UHF and ROHF geometries of CN, along with those for CN-, are given

in Table 4.22. Looking at only the PVDZ results, we see that in going from SCF

to MBPT(2), the UHF bond length contracts by 0.024 A. This is contrary to what

is expected, since it is well known that MBPT(2) tends to overestimate the effect

of correlation on bond lengths [43]. The ROHF bond, however, lengthens in going

from SCF to MBPT(2), which is in line with our expectations, although this is by a

considerable 0.070 A. Progressing to the CCSD level, we see that UHF and ROHF

bonds are essentially the same. We see that in going to the CCSD level, the ROHF

bond is contracted only 0.025 A from MBPT(2), so the MBPT(2) result is actually

quite reasonable. The UHF bond lengthens 0.045 A and show that it does not provide
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Table 4.23. Electron affinity (kJ/mol) of CN at different levels of MBPT using UHF
and ROHF references with the PVDZ basis.

Electron Affinity0  Multiplicity
ROHF UHF UHF (No T1 ) UHF (With T1)

SCF 271 223 2.406
MBPT(2) 284 374 2.368 -
MBPT(3) 300 353 2.354 2.291

SDQ-MBPT(4) 284 339 2.339 2.233
MBPT(4) 278 350 2.336 2.236

CCSD 276 276 - 2.043
'Experimental value is 367 ± 3 kJ/mol.

a good description at MBPT(2). This result parallels very well with the value of the

multiplicity, also shown in Table 4.22. The UHF-SCF wavefunction is highly spin

contaminated with a multiplicity of 2.337. It is significantly improved at MBPT(2),

being 2.233, but is still very contaminated. At the CCSD level, it is almost a pure

spin state.

We determined the EA of CN with both UHF and ROHF references. Table 4.23

shows the EA for CN at different levels of MBPT calculated using the CCSD geome-

tries, together with the UHF multiplicities. At the SCF level, we see that ROHF

is closer than UHF to the experimental value of 367 kJ/mol, but is still almost

100 kJ/mol too small. At the correlated level, UHF appears to do a better job while

ROHF is significantly below the experimental value. However, as SDQ-MBPT(4) is

the fourth-order approximation to the infinite-order CCSD result, the UHF-MBPT

electron affinity must converge to 276 kJ/mol, showing the low-order UHF-MBPT

results to be fortuitous. Furthermore, it should be pointed out that UHF does a poor

job of describing the geometry at MBPT(2). This would seem to indicate that at the

MBPT(2) level, there is insufficient orbital relaxation to make up for the deficiencies

in the UHF wavefunction. A measure of this is given by the multiplicity. Indeed,

if we examine the multiplicity at each level of MBPT, also given in Table 4.23, we
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Table 4.24. Electron affinity (kJ/mol) of CN at different levels of MBPT using UHF
and ROHF references with the PVTZ basis.

Electron Affinitya Multiplicity
ROHF UHF UHF (No T1) UHF (With T,)

SCF 305 262 2.341
MBPT(2) 356 432 2.307 -
MBPT(3) 366 409 2.295 2.237

SDQ-MBPT(4) 352 396 2.282 2.186
MBPT(4) 351 411 2.280 2.189

CCSD 344 344 - 2.041
a Experimental value is 367 ± 3 kJ/mol.

see that the wavefunction is still severely contaminated. We must conclude that the

excellent agreement for UHF is merely a fortunate occurrence rather than the result

of a fundamentally better description.

Turning cur attention to the PVTZ results, we see the same trends in the geometry

for UHF and ROHF in going from SCF to MBPT(2), and then to CCSD. ROHF

behaves in the manner expected as the level of theory is increased, while UHF does

not. With the PVTZ basis, the ROHF based MBPT electron affinities do a much

better job than UHF, as seen in Table 4.24. We see that the variation of the ROHF

EA's with level of theory is much less than that for UHF. The ROHF EA has a spread

of only 15 kJ/mol while UHF has a spread of 36 ki/mol. In addition, the ROHF

results consistently remain below the experimental value while UHF overestimates

considerably.

Since the use of augmented basis sets greatly improves the EA results for the first

row atoms, we use the augmented PVDZ and PVTZ basis sets for CN. The optimized

geometries and UHF multiplicities are given in Table 4.25. Not too surprisingly, we

see very little change in the geometries between the augmented and unaugmented

basis sets. This make sense since the additional p function is diffuse and would not

be expected to play a significant role in molecular bonding. A more dramatic change
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Table 4.25. Optimized geometriesa for CN and CN- using the PVDZ+ and PVTZ+
basis sets and UHF multiplicities.

PVDZ+ PVTZ+
SCF MBPT(2) CCSD SCF MBPT(2) CCSD

CN- (RHF) 1.167 1.208 1.196 1.153 1.185 1.173
CN (UHF) 1.163 1.138 1.184 1.150 1.124 1.163
CN (ROHF) 1.139 1.210 1.184 1.129 1.186 1.164
UHF multiplicity 2.334 2.232 2.043 2.302 2.201 2.041
a Bond lengths are in A.

Table 4.26. Electron affinity (kJ/mol) of CN at different levels of MBPT using UHF
and ROHF references with the PVDZ+ basis.

Electron Affinitya Multiplicity
ROHF UHF UHF (No T1) UHF (With T)

SCF 299 250 2.404
MBPT(2) 316 406 2.366 -
MBPT(3) 331 382 2.353 2.289

SDQ-MBPT(4) 315 369 2.338 2.232
MBPT(4) 311 382 2.336 2.235

CCSD 307 307 - 2.043
aExperimental value is 367 ± 3 kJ/mol.

is seen for the EA's, shown along with the UHF multiplicities in Tables 4.26 and 4.27.

The additional p function with the PVDZ basis adds approximately 30 kJ/mol to

the predicted EA's at each level of theory for both UHF and ROHF. This leads

the UHF PVDZ+ results to overestimate the EA while the ROHF PVDZ+ results

are still below the experimental value. The spread in the EA values for UHF and

ROHF are 37 and 20 kJ/mol, respectively. With the PVTZ+ basis, UHF significantly

overestimates the EA while ROHF is essentially correct. The spread in EA's are now

38 and 13 kJ/mol for UHF and ROHF, respectively. The continued poor performance

for UHF is again mirrored by the spin contamination using the augmented basis sets,

with the multiplicities basically unchanged from those obtained with the unaugmented

basis sets. Summarizing, ROHF-MBPT provides a better description of the CN
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Table 4.27. Electron affinity (kJ/mol) of CN at different levels of MBPT using UHF
and ROHF references with the PVTZ+ basis.

Electron Affinity' Multiplicity
ROHF UHF UHF (No T1 ) UHF (With T1)

SCF 314 272 2.341
MBPT(2) 367 443 2.307 -

MBPT(3) 375 419 2.295 2.237
SDQ-MBPT(4) 362 405 2.282 2.186

MBPT(4) 362 422 2.280 2.189
CCSD 354 355 - 2.041

aExperimental value is 367 ± 3 kJ/mol.

system. This is based on its better accuracy upon improvement of the basis and in

its consistency at each level of MBPT. The spread in EA values is much less than for

UHF and is diminished by improving the basis, while the UHF spread remains about

the same.

While this study of the CN system gives us good information for comparing ROHF

and UHF based MBPT, we also wish to compare ROHF-MBPT to other methods

which address the spin contamination problem. Handy, et. al. [20] have studied

the cyano radical using their spin projection methods. In order to provide a direct

comparison, we perform optimizations of CN using the same basis set as Handy,

et. al. [20] at the MBPT(2) and CCSD levels of theory. The results are shown in

Table 4.28, together with the projected results of Handy, et. al. At MBPT(2), the

ROHF result is quite close to the experimental bond length of 1.172 A, while the UHF

result gives a much shorter bond length. The PUMP2(1) and PUMP2(2) methods,

with elimination of the first and second contaminants, respectively, improve the UHF

result, but not in a straightforward manner, as the elimination of two contaminants

gives a poorer bond length. The electron affinities for CN at different levels of theory

are shown in Table 4.29. As can be seen, the ROHF-MBPT(2) result is in very

good agreement with the experimental value of 367 kJ/mol, while the UHF result is
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Table 4.28. Optimized geometries (in A) for CNa and CN- using a 5s4p2d basis setb.

MBPT(2) CCSD
CN- (RHF) 1.186 1.174
CN (UHF) 1.124 1.165
CN (ROHF) 1.188 1.165
CN I PUMP2(1) b  1.164
CN / PUMP2(2) b  1.154
aThe experimental value for Re for CN is 1.172 A.
bReference [20]

Table 4.29. Electron affinities (kJ/mol) and selected multiplicities, 2S+1 values of
CN at CCSD optimized geometries using a 5s4p2d basis set'.

Electron Affinity b  Multiplicity
ROHF UHF UHF (No T1) UHF (With TI)

SCF 312 267 2.357
MBPT(2) 356 434 2.321 -
MBPT(3) 365 410 2.309 2.250

SDQ-MBPT(4) 352 397 2.296 2.198
MBPT(4) 350 413 2.293 2.201

CCSD 343 344 - 2.043
a Reference [20]
bExperimental value for the CN electron affinity is 367 ± 3 kJ/mol.



60

not. As the level of theory increases, the UHF results undergo large changes while

the ROHF results do not. However, both references converge to the same result at

CCSD, which attests to the powerful treatment of orbital relaxation in CC methods

[44]. Additionally, the improvement in the spin multiplicity for the UHF wavefunction

is slow as the level of perturbation theory is increased. Even with the infinite order

CCSD method, the spin contamination is not completely eliminated. The PUMP2(1)

and PUMP2(2) results are 358.4 and 364.9 kJ/mol, respectively, also in excellent

agreement, but several points should be made about these methods.

Examining the geometries in Table 4.28, the PUMP2(1) result is essentially the

same as the CCSD result, but it does not reflect the expected behavior for the

MBPT(2) method. It is well known that MBPT(2) tends to overestimate the ef-

fect of correlation on bond lengths [43], so the MBPT(2) bond length should be

longer than the full CI value. This also holds for the PUMP2(2) result, which falls

back towards the UHF result. Additionally, the PUMP2(1) energy is lower than the

PUMP2(2) energy (-92.5733 vs. -92.5708 hartrees). This is somewhat surprising for

the following reason. Since we are studying the ground state of CN, we expect the

contaminating quartet, sextet, ... , to lie higher in energy. The degree to which these

higher multiplicity states mix into the ground state wavefunction is indicated by the

average multiplicity and how far it is from the exact value. Since the ground state

doublet is contaminated by higher energy multipiets, we expect the ground state en-

ergy to decrease with the removal of each successive contaminant, i.e., we are moving

towards a wavefunction which reflects the pure doublet spin state. Since removal of

the second contaminant in CN raised the energy, one must wonder what affect the

projection operator is having on the wavefunction. An additional indication of aber-

rant behavier *s found in the average multiplicity. PUMP2(1) gives a value of 1.941,

while PUMP2(2) gives the correct value of 2.000.
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The reasons for this behavior have been explained in a recent paper by Koga,

et. al. [45]. They examined the effect of using approximate spin projection equations

versus the exact projection equations for elimination of spin contamination in the UHF

wavefunction. In the limit of including all possible higher multiplets, the approximate

equations give the same result as the exact equations. By examining the leading terms

in the error for (, 2 ) and (ft) after elimination of the first and second contaminants,

they saw that the approximate projection changes the sign of the lead error upon

each projection. This means that for only one projection, the leading term in the

error for the approximate scheme is negative, while it remains positive for the exact

expression. After two projections, the sign for the lead term in the approximate

expression is again positive, in agreement with the exact formula. Depending on the

magnitude of the contamination, and the importance of the first contaminant, it is

possible to get a value of (S2) which is below the exact value. A similar situation

holds for the energy.

Extending this examination to the PUMP2 projection schemes, Koga, et. al. [45]

demonstrated that the behavior seen for UHF projection also holds for the PUMP2

schemes. The PUMP2(1) projection results in a lead error term which is negative for

the energy, while PUMP2(2) has a positive lead error in the energy. They also point

out that similar behavior is present for the value of (S2 ). Their conclusion is that the

approximate spin projection equations should not be used for single projection, but

should always be used with double projection. The work of Koga, et. al. provides

a theoretical confirmation of the observation that PUMP2(1) gives errant results.

However, it will be shown later for Li 3 that this particular drawback is not always

important.

Given this discussion of how the wavefunction can be significantly modified, it

raises the issue of the validity of using the projected energies in conjunction with

closed-shell RHF results. Ostensibly, any RHF-MBPT result is unprojected since it
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is not contaminated. Similarly, the ROHF-MBPT results are unprojected ones and

it is logical to conclude that properties determined as differences between RHF and

ROHF-MBPT are more theoretically satisfying. Also, PUMP methods are no longer

rigorously size-extensive. This deficiency keeps them from being suitable methods for

extended systems, violating the rationale for all many-body methods. Another factor

which limits the usefulness of the PUMP2(2) method, however, is the expense required

to routinely perform calculations at this level. Handy, et. al. [20] point out the

substantial task of putting together a practical evaluation of PUMP2(2) derivatives,

which is critical for wide acceptance of any method. They reported needing some

8000 lines of FORTRAN to implement the gradients. They also report that the cost

of performing a PUMP2(2) energy and gradient calculation is typically three times

that required for a UHF-MBPT(2) energy and gradient. This expense highlights the

economy of the ROHF-MBPT approach, which requires essentially the same amount

of time as a UHF-MBPT(2) energy and gradient. Therefore, for systems which are

spin-contaminated and for which a reliable ROHF reference can be obtained, this is

the more efficient method for introducing electron correlation.

4.4 The Li3 Molecule

Handy, et. al. [20] also considered this molecule as it contains a significant amount

of spin contamination. Our first comparison, therefore, is to their results. We opti-

mize the structure of L1i 3 using the 6-31G* basis at the SCF, MBPT(2), and CCSD

levels of theory with both UHF and ROHF references. The geometries, energies, and

average multiplicity are given in Table 4.30. As can be seen, Li 3 is very heavily spin

contaminated, although it is essentially eliminated at the CCSD level. As with CN,

we have also calculated the MBPT energies for both UHF and ROHF using the CCSD

optimized geometries. These energies, as well as the binding energy per Li atom, are
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Table 4.30. UHF and ROHF geometriesa of C2, Li3 at several levels of theory using
the 6-31G* basis set.

SCF MBPT(2) CCSD

UHF
R(Li-Li) 2.867 2.820 2.820

0 70.51 75.38 72.74
Energy -22.313306 -22.330439 -22.347708

Multiplicity 2.421 2.376 2.028
ROHF

R(Li-Li) 2.900 2.856 2.820
0 76.12 74.30 73.00

Energy -22.301898 -22.333167 -22.347056
Multiplicity 2.000 2.000 2.000
aBond lengths in A; bond angles in degrees.

given in Table 4.31. There are two experimental values for the binding energy: 13.8

± 1.3 kcal/mol [46] and 12.10 ± 0.24 kcal/mol [47]. At the MBPT(2) level, we see

the ROHF value (7.84 kcal/mol) is between the UHF value (7.26 kcal/mol) and the

PUMP2 value (8.60 kcal/mol). While this seems to validate PUMP2, one must re-

member the costs associated with PUMP2. As alluded to earlier, the PUMP2(1)

result for the the average multiplicity is not poor; rather, it gives a value of 2.000.

The effect on the energy in going to PUMP2(2) is also not as dramatic as with CN,

with the PUMP2(2) energy only 0.001 millihartree higher in energy. However, this

general approach has not been applied to higher levels of perturbation theory. We

see from Table 4.31 that the ROHF binding energy is consistently better than the

UHF value, except at the CCSD level, where the powerful corrective ability causes

the reversal of the UHF/ROHF ordering.

Another interesting facet to Li 3 lies in determining its structure and vibrational

frequencies. This molecule, as well as the other triatomic alkali metal molecules,

are known to be pseudo-rotators. The structure presented is for one of the two

possitble C2v structures which result from Jahn-Teller distortion from D3h. To further

characterize this geometry, the harmonic vibrational frequencies are determined via
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Table 4.31. Total energies for C2, Li3 and binding energies (BE) per Li atom using
the CCSD optimized geometry.

UHF ROHF
Energya BEb Energya BEb

SCF -22.313212 3.99 -22.301450 1.54
MBPT(2) -22.330365 7.28 -22.333067 7.84
MBPT(3) -22.335964 8.44 -22.342155 9.74

SDQ-MBPT(4) -22.338934 9.06 -22.345308 10.39
MBPT(4) -22.339168 9.10 -22.346065 10.55

CCSD -22.347708 10.89 -22.347056 10.75
aTotal energies in hartrees.
bBinding energies in kcal/mol.

Table 4.32. Harmonic frequencies (intensities)a for C2, Li 3 at several levels of theory
using the 6-31G* basis set.

SCF MBPT(2) CCSD Fittedb
UHF

a, 165 (16.9) 150 (1.5) 169 (11.0) 130
b2 240 (4.1) 221 (22.4) 193 (14.5) 190
a, 315 (17.3) 332 (8.6) 325 (23.6) 349

ROHF
a, 136 (7.7) 155 (10.1) 166 (12.1) 130
b2  209 (40.4) 282 (820.1) 190 (31.2) 190
a, 308 (14.4) 316 (18.7) 323 (24.1) 349

aFrequencies in cm-1; intensities in km/mol.
'Reference [48].

a finite difference of analytic gradients and are shown in Table 4.32. Also included

are the frequencies determined by Thompson, et al. [48] via analytic fits of the Li3

potential energy surface. We see that the SCF results for ROHF are actually very

reasonable, but this is just a fortuitous circumstance. The UHF SCF results are,

as expected, somewhat off the mark with respect to the fitted values. If we look at

MBPT(2), we see that ROHF is performing markedly worse than UHF, and, based

on some of the previous results, is somewhat disturbing. The b2 frequency deviates

substantially from the fitted value and has an intensity which is very large. As it
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turns out, this is due to the fact that the ROHF reference function breaks symmetry;

a situation to which ROHF is more susceptible than UHF. The results given so far

are for the symmetric solution. If the C2, molecular symmetry is imposed on the

wavefunction, then one can obtain the symmetric solution. However, if the calculation

is allowed to proceed in C1 symmetry, the additional freedom allows the wavefunction

to optimize into a lower symmetry than the molecular framework. Therefore, the

large discrepancy in the MBPT(2) frequencies could be attributed to this particular

shortcoming of the ROHF reference. A further indication of the corrective power of

CCSD is to examine the CCSD frequencies. At this level, the ROHF and UHF results

are essentially indistinguishable. In addition, they are very close to the fitted values.

4.5 The FCS radical

This molecule is of particular interest since an experimental emission [49] at-

tributed to the fluorothioformyl radical FCS has been withdrawn (50]. The withdrawal

was made because the original experiment was repeated with isotopic substitution and

the spectra remained unchanged, indicating an emitter other than FCS. With this

in mind, Chan and Goddard [51] conducted a study into the characterization of this

radical and the chloro analog, CICS. They pointed out in this work that due to se-

vere spin contamination of the UHF reference, MBPT(2) work using this reference

was suspect. They utilized an ROHF reference to conduct their most accurate cal-

culations, but used configuration interaction with singles and doubles (CISD) to add

the electron correlation. For these reasons, the FCS molecule provides an excellent

opportunity for comparison of two different single reference methods (CI and MBPT)

using the ROHF reference.

We used two different basis sets in studying FCS. The first was the 6-31G* basis,

since this was used by Chan and Goddard. The second was a better, full DZP
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Table 4.33. UHF and ROHF optimized geometriesa for the 2A' state of FCS using
two different basis sets at several levels of theory.

UHF ROHF
SCF MBPT(2) CCSD SCF MBPT(2) CCSD RCISDb

6-31G*
R(F-C) 1.288 1.301 1.318 1.280 1.322 1.318 1.305
R(C-S) 1.584 1.543 1.583 1.572 1.576 1.583 1.572
O(FCS) 131.27 133.91 130.94 132.17 131.43 130.88 131.8

DZP
R(F-C) 1.287 1.300 1.317 1.280 1.322 1.317 -
R(C-S) 1.576 1.532 1.572 1.563 1.565 1.573 -

8(FCS) 131.33 133.94 131.02 132.27 131.49 130.96 -
aBond lengths in A; bond angles in degrees.
bReference [51].

quality basis. The DZP basis for C and F consists of the standard Dunning (9s,5p)

primitive set [52] contracted to [4s,2p] and augmented with a single polarization

function [53]. The DZP basis for S started from the (12 s, 9p) primitive set of McLean

and Chandler [54] contracted to [6s,4p], and augmented with a single d function [55].

The geometries obtained with the UHF and ROHF references at several levels of

theory are shown in Table 4.33. In addition, we also show the RCISD (ROHF-CISD)

results from Chan and Goddard. The UHF results at the SCF and MBPT(2) level,

as well as the ROHF SCF results, using the 6-31G* basis are the same as Chan and

Goddard. Since there are no experimental values for the geometry, we shall use the

CCSD results for the ROHF reference as our best estimate. We choose this over

the RCISD results because CCSD is a size extensive method while CISD is not. As

noted by Chan and Goddard, the bond angle is fairly invariant to level of theory,

ranging from 130.80 to 133.90 in either basis set. With respect to the bond lengths,

the F-C bond length increases with introduction of correlation and makes a similar

increase in going from MBPT(2) to CCSD. The most notable change is the effect of

correlation on the C-S bond length. The UHF SCF result is spuriously close to the
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Table 4.34. Harmonic frequencies (intensities)a of FCS given at several levels of
theory.

UHF RCISDb
SCF MBPT(2) CCSD

6-31G*
a' 495 (3.8) 506 (0.1) 471 (0.7) 486
a' 941 (59.0) 1164 (26.9) 978 (26.0) 1013
a' 1466 (426.5) 1491 (1284.7) 1379 (418.2) 1429

DZP
a' 497 (4.6) 510 (0.2) 474 (0.9) -
a' 936 (74.4) 1145 (66.4) 970 (47.1) -
a' 1460 (528.8) 1499 (1363.7) 1368 (464.2) -

ROHF
6-31G*

a' 505 (3.3) 476 (0.6) 470 (0.6) -
a' 1050 (17.0) 976 (44.2) 973 (28.9) -
a' 1480 (634.8) 1391 (369.0) 1376 (408.0) -

DZP
a' 508 (4.6) 480 (1.1) 473 (0.9) -
a' 1049 (25.5) 963 (74.5) 966 (46.7) -
a' 1477 (719.8) 1377 (412.1) 1364 (453.5) -

'Frequencies are in cm-1; intensities in km/mol.
bReference [51].

CCSD result, but at the MBPT(2) level it is significantly shorter. This is in contrast

to the ROHF-MBPT(2) result, which is only slightly shorter than the CCSD result.

At the CCSD level, we see that using the UHF or ROHF reference essentially makes

no difference. The bond angles are different by less than 0.10 with either basis. We

can also see how the geometries compare at different levels of theory by examining

the harmonic frequencies, which are given in Table 4.34. For the 6-31G* basis, we

see that the ROHF-MBPT(2) results have outstanding agreement with the CCSD

results. The RCISD results are reasonable, but are still not very close. One must also

note that this example continues to demonstrate the powerful corrective abilities of

CCSD, as the UHF and ROHF results are essentially the same.
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We also wished to assess the effects of triple excitations on the geometry of FCS.

The geomnetry was optimized at the CCSD(T) level using the DZP basis and the

UHF reference. The F-C bond is 1.322 A, the C-S bond is 1.577 A, and the bond

angle is 130.820. These results indicate that triple excitations are not important in

characterizing the potential surface. Therefore, we would suggest that the DZP CCSD

results, be used as a guide for experiment in determining if FCS has been synthesized.

4.6 The N9 H molecule and N,, + H transition state

The characterization of the reaction N2 + H has been of interest recently because of

its postulated importance in combustion reactions. Several theoretical and experimen-

tal studies have been conducted to further understand this molecule [56, 57, 58, 59].

The most extensive set of calculations published to date are those of Walch, Duchovic,

and Rohlfing (WDR) [58] and a subsequent study by Walch [59]. They used a reason-

ably large ANO basis set and performed CASSCF/CCI calculations. The later study

by Walch further characterized the potential surface, but essentially did not change

the results of the earlier paper. For purposes of evaluating our methods, we shall use

the results of WDR as the currently best available in the literature.

Optimizations of the N2H minimum and N2 + H transition state were performed

at the SCF, MBPT(2), and CCSD levels of theory using the PVDZ basis. These

geometries, together with the energies and average multiplicities, are reported in

Tables 4.35 and 4.36 for the PVDZ basis. The geometries of WDR are also given.

For the N2H minimum at MBPT(2), we see that once again, the UHF structure

is significantly different than that for ROHF. The behavior for the N-N bond is

incorrect, resulting in a contraction of the bond while ROHF gives the expected bond

lengthening. The N-N bond contraction for UHF also is probably responsible for the

large increase (, 80) in the NNH angle. At the CCSD level, both UHF and ROHF
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Table 4.35. UHF and ROHF optimized geometries0 for the 2A' state of N2H using the
PVDZ basis set at several levels of theory.

SCF MBPT(2) CCSD WDRb
UHF

R(N-N) 1.178 1.150 1.190 1.197
R(N-H) 1.036 1.061 1.060 1.062
O(NNH) 112.39 120.05 114.87 116.3
Energy -109.439315 -109.737808 -109.762186

Multiplicity 2.124 2.055 2.014
ROHF
R(N-N) 1.167 1.185 1.190
R(N-H) 1.030 1.058 1.060
O(NNH) 112.98 117.82 114.95
Energy -109.431025 -109.746816 -109.761990

Multiplicity 2.000 2.000 2.000
aBond lengths in A; bond angles in degrees.
bReference [58].

Table 4.36. UHF and ROHF optimized geometriesa for the transition state of the
N2 + H reaction using the PVDZ basis set at several levels of theory.

SCF MBPT(2) CCSD WDRb
UHF

R(N-N) 1.117 1.115 1.137 1.136
R(N-H) 1.394 1.347 1.417 1.457
9(NNH) 113.16 122.54 117.02 118.6
Energy -109.418204 -109.724881 -109.746636

Multiplicity 2.133 2.092 2.013
ROHF

R(N-N) 1.105 1.152 1.136
R(N-H) 1.336 1.427 1.413
O(NNH) 116.93 117.83 117.30
Energy -109.401681 -109.743730 -109.745685

Multiplicity 2.000 2.000 2.000
"Bond lengths in A; bond angles in degrees.
bReference [58].
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give essentially the same structure. This is very close to the results of WDR, with the

N-N bond being 0.007 A shorter and the angle 1.40 smaller. Comparing the MBPT(2)

and CCSD geometries, we observe that ROHF gives a much better qualitative result

than UHF.

The geometry of the transition state further emphasizes the shortcomings of the

UHF reference. Once again, we see a slight contraction of the N-N bond length

in going from SCF to MBPT(2), which is corrected at the CCSD level. The ROHF

reference has the anticipated N-N behavior at MBPT(2), the bond increasing in length

; 0.05 A. The CCSD results for ROHF and UHF are essentially the same, although

the N-H bond for ROHF is slightly (0.004 A) shorter than the UHF result. Comparing

the CCSD results to the work of WDR, we see the largest difference in the N-H bond

length; this is most likely due to the larger basis set used by WDR. Their basis set

gives more flexibility in this region whereas the PVDZ basis is deficient. If we look at

the MBPT(2) results, we see that ROHF gives remarkably good agreement with the

CCSD results, with the N-H bond at 1.427 A versus 1.347 A for UHF. The behavior

of the N-H bond in going from MBPT(2) to CCSD with the ROHF reference is also

as expected; the bond contracts slightly. The geometries given here indicate that

ROHF is doing a very good job in determining the primary qualities of the molecule

at only the MBPT(2) level of theory.

The harmonic frequencies and intensities of the minima and transition states are

shown in Table 4.37 for the PVDZ basis. We see that the ROHF-MBPT(2) fre-

quencies are very close to the CCSD results, in stark contrast to the UHF-MBPT(2)

frequencies. The N-N stretch (2817 cm -1 ) is z 1000 cm -1 too large, while the ROHF

N-N stretch is only 17 cm -1 too large. Another important point is to note the inap-

propriate value of the UHF-MBPT(2) frequency for the N-N stretch. The optimized

MBPT(2) geometry for N2 with the PVDZ basis is 1.129 A and has a frequency of

2179 cm -1 . First, the N-N bond in N2H is longer than in N2 at the MBPT(2) level,
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Table 4.37. Harmonic frequencies (intensities)* for UHF and ROHF minima and
transition states for N2H using the PVDZ basis set.

SCF MBPT(2) CCSD WDRb
UHF

Minimum
a' 1238 (107.9) 1028 (154.3) 1118 (98.1) 1070
a' 1661 (7.3) 2817 (68.6) 1858 (18.2) 1583
a' 3237 (5.6) 2962 (103.2) 2891 (61.1) 2744

Transition State
a' 1880i (976.7) 2246i (2568.5) 1647i (916.0) 1662i
a' 886 (10.5) 800 (16.6) 770 (4.6) 771
a' 2146 (46.6) 2889 (223.3) 2153 (55.7) 2072

ROHF
Minimum

a' 1237 (120.4) 1001 (157.7) 1121 (97.1)
a' 2051 (22.9) 1869 (26.2) 1852 (17.1)
a' 3394 (0.5) 2923 (25.6) 2893 (60.9)

Transition State
a' 3540i (6912.2) 1880i (1233.6) 1793i (1121.7)
a' 877 (14.6) 771 (2.3) 772 (5.0)
a' 2420 (108.0) 1986 (31.1) 2159 (58.7)

aFrequencies are in cm-1; intensities in km/mol.
bReference [58].
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but the frequency is ; 640 cm -1 too large. Curtiss, et. al. [56] noted similar behavior

at the UHF-MBPT(3) level (the N-N stretch in N2H being 85 cm - 1 larger than in

free N2), but attributed it to a poor basis set (6-31G**).

In order to test this hypothesis, we optimized N2H and N2 at the MBPT(3) level

using UHF and RHF references, respectively. The N2H geometry is R(N-N)=1.155 A,

R(N-H)=1.055 A, and 9(NNH)=117.14'. The resulting frequencies and intensities are

1074 cm - 1 (135.2 km/mol), 2627 cm -1 (79.3 km/mol), and 2996 cm - 1 (39.8 km/mol).

The MBPT(3) N2 stretching frequency is 2534 cm -1 . We observe essentially the same

behavior with the PVDZ basis as that observed by Curtiss, et. al. [56] The N-N strech

in N211 is 93 cm - 1 larger than in free N2, despite having a longer bond length. The

results from this work seem to indicate that this phenomenon is not merely a basis

set problem, since the PVDZ basis was designed for use in correlated calculations.

Instead, it appears to be a breakdown of UHF-MBPT. This poor performance has

been attributed to the poor description which single reference methods provide in

multiply-bonded systems [60, 61], and was explicitly pointed out by WDR as a neces-

sity for using a multireference approach. With this in mind, it would appear difficult

to reconcile the quite excellent agreement between ROHF-MBPT(2) and CCSD. The

ROHF-MBPT(2) N-N stretch is 310 cm -1 smaller than in free N2 and is what one

would expect, given the longer N-N bond in N2H.

One point to note, however, is that the UHF reference function is moderately spin

contaminated (average multiplicity = 2.078), and this could very well account for

its erratic performance at MBPT(2) and MBPT(3). Therefore, rather than being a

deficiency in single reference methods, it may only be a poor starting point in this

case. A more conclusive comparison between UHF and ROHF at finite order must

be deferred until the implementation of fourth-order gradients for ROHF.

The transition state frequencies show a similar trend, with the ROHF-MBPT(2)

results very close to CCSD and the UHF results not. The UHF-CCSD results for
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Table 4.38. Relative energy of N211 with respect to N2 + H and height of dissociation
barrier with respect to N2H at PVDZ optimum geometries (kcal/mol).

SCF MBPT(2) CCSD
AE Barrier AE Barrier AE Barrier

UHF 10.09 13.25 22.50 8.11 7.30 9.76
ROHF 15.30 18.41 16.85 1.94 7.42 10.23
WDR results: AE = 3.01, barrier = 12.15.

the transition state are close to those of WDR; the same is true for ROHF except for

the reaction coordinate mode (N.. .H). The ROHF result indicates a stronger motion

through the transition state than UHF or the WDR work. In order to understand

this point better, we need to examine the predicted barrier heights.

The relative energies of N2H with respect to N2 + H and the barrier heights

for the optimized geometries at the SCF, MBPT(2), and CCSD levels are shown in

Table 4.38. Looking at the barrier height at these levels, we see a correspondence

between the barrier height and the magnitude of the imaginary frequency for UHF

and ROHF. The ROHF barrier is larger at the SCF and CCSD levels, and so is the

imaginary frequency. At MBPT(2), the UHF barrier is larger and the same follows

for the imaginary frequency. Comparing to the results of WDR shows that at the

best level (CCSD), the barrier is underestimated. With this quality of basis set, we

are at a level where the geometry is less likely to be susceptible to large changes as a

function of increasing basis set quality (except fo"L the N-H transition state bond as

stated earlier). It is possible, then, that with a better basis set the CCSD differences

between UHF and ROHF for the imaginary mode may grow smaller, in addition to

reaching better agreement with WDR.

To further evaluate the performance of ROHF-MBPT, we calculate the MBPT

energies of the minima and transition states for UHF and ROHF using the CCSD

geometries. These energies, together with the UHF multiplicities, are shown in Ta-

bles 4.39 and 4.40 for the PVDZ basis and in Tables 4.46 and 4.47. As with all
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Table 4.39. MBPT energies using UHF and ROHF references for the 2A' state of N2H
using the PVDZ basis at the CCSD optimized geometry.

UHF (Mult.) (Mult.) ROHF
No T1  With T1

SCF -109.438402 2.155 a -109.428938
MBPT(2) -109.732363 2.135 a -109.746667
MBPT(3) -109.744844 2.130 2.101 -109.752964

SDQ-MBPT(4) -109.754103 2.125 2.077 -109.761317
MBPT(4) -109.764649 2.125 2.077 -109.774277

'There is no T1 contribution at the SCF and MBPT(2) levels of theory.

Table 4.40. MBPT energies using UHF and ROHF references for the transition state
of N2H using the PVDZ basis at the CCSD optimized geometry.

UHF (Mult.) (Mult.) ROHF
No T With T1

SCF -109.416664 2.172 a -109.399333
MBPT(2) -109.722128 2.145 a -109.743143
MBPT(3) -109.727494 2.136 2.100 -109.735337

SDQ-MBPT(4) -109.739354 2.128 2.071 -109.746397
MBPT(4) -109.752187 2.127 2.072 -109.763122

'There is no T contribution at the SCF and MBPT(2) levels of theory.

the previous work at the MBPT level, we show the change in the multiplicity both

with and without T1. We see that MBPT improves the multiplicity, especially with

inclusion of T1 , but that even at MBPT(4), the wavefunction still remains contam-

inated. The relative energies and barrier heights at the different MBPT levels with

the CCSD geometries are shown in Table 4.41. We see that at the various levels of

MBPT, the barrier height is consistently underestimated with respect to the WDR

work. Following the argument about basis set size, we would expect the energies to
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Table 4.41. Relative energy of N2H with respect to N2 + H and height of dissociation
barrier at several levels of theory using CCSD optimized geometries with the PVDZ
basis set (kcal/mol).

SCF MBPT(2) MBPT(3) SDQ-MBPT(4) MBPT(4)
AE

UHF 8.23 25.50 13.16 13.43 16.36
ROHF 14.17 16.52 8.07 8.91 10.32

Barrier Height
UHF 13.64 6.42 10.89 9.25 7.82

ROHF 18.58 2.21 11.06 9.36 7.00
WDR results: AE = 3.01, barrier = 12.15.

be more sensitive to basis, and so the relative energies may be improved by using a

larger basis set.

In order to explore this effect, we repeat all optimizations using the PVTZ basis

set. The geometries of the N2H minimum are shown in Table 4.42. As one would

expect, the improved basis leads to a slight contraction of all the bond lengths, along

with a concomitant increase in the bond angles. For the transition state geometries,

shown in Table 4.43, the N-N bond contracts slightly while the N-H bond length-

ens for both UHF and ROHF. The bond angles remain essentially unchanged. The

behavior for the N2H transition state using the PVDZ basis is seen again with the

PVTZ basis. The ROHF-MBPT(2) transition state is in remarkably good agreement

with that of WDR. At the CCSD level, however, both UHF and ROHF still have a

shorter N-H bond than WDR.

The harmonic frequencies and intensities for the minimum and the transition state

with the PVTZ basis are shown in Table 4.44. As with the geometries, there is no

substantive change upon improvement of the basis. The UHF-MBPT(2) result for

the N-N stretch at the N2H minimum is still too large and not qualitatively correct.

Since the PVTZ basis is comparable to that used by WDR, we are still disturbed

by the disagreement between the N-H bond lengths for the transition state. Feeling
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Table 4.42. UHF and ROHF optimized geometries' for the 2A' state of N2H using the
PVTZ basis set at several levels of theory.

SCF MBPT(2) CCSD WDRb
UHF

R(N-N) 1.166 1.140 1.171 1.197
R(N-H) 1.028 1.045 1.044 1.062
O(NNH) 112.51 121.03 116.30 116.3
Energy -109.469525 -109.864110 -109.882387

Multiplicity 2.096 2.042 2.011
ROHF

R(N-N) 1.158 1.167 1.171

R(N-H) 1.022 1.046 1.044
O(NNH) 113.89 119.56 116.18
Energy -109.460967 -10J.871597 -109.882200

Multiplicity 2.000 2.000 2.000
a Bond lengths in A; bond angles in degrees.
bReference [58].

Table 4.43. UHF and ROHF optimized geometriesa for the transition state of the
N2 + H reaction using the PVTZ basis set at several levels of theory.

SCF MBPT(2) CCSD WDRb
UHF

R(N-N) 1.105 1.102 1.11" 1.136
R(N-H) 1.384 1.351 1.425 1.457
O(NNH) 113.01 123.17 117.61 118.6
Energy -109.448605 -109.848808 -109.864372

Multiplicity 2.116 2.080 2.012
ROHF

R(N-N) 1.094 1.131 1.115
R(N-H) 1.323 1.440 1.417
O(NNH) 117.73 117.90 117.91
Energy -109.432725 -109.864051 -109.863509

Multiplicity 2.000 2.000 2.000
a Bond lengths in A; bond angles in degrees.
bReference [58].
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Table 4.44. Harmonic frequencies (intensities)' for UHF and ROHF minima and
transition states for N2H using the PVTZ basis set.

SCF MBPT(2) CCSD WDRb
UHF

Minimum
a' 1234 (114.9) 1053 (158.1) 1138 (106.4) 1070
a' 1707 (3.3) 2803 (65.5) 1899 (16.5) 1583
a' 3237 (5.5) 2972 (55.0) 2954 (42.4) 2744

Transition State
a' 1899i (1069.9) 2228i (2656.6) 1615i (875.2) 1662i
a' 866 (9.9) 788 (14.1) 757 (4.1) 771
a' 2170 (56.0) 2757 (241.3) 2197 (73.2) 2072

ROHF
Minimum

a' 1238 (126.5) 1022 (161.5) 1141 (105.3)
a' 2023 (21.9) 1896 (26.6) 1880 (15.2)
a' 3393 (0.4) 2910 (26.4) 2960 (41.1)

Transition State
a' 3419i (6877.0) 2097i (1397.3) 1710i (1030.6)
a' 881 (13.9) 742 (2.5) 763 (4.5)
a' 2398 (118.6) 2011 (43.4) 2200 (75.9)

aFrequencies are in cm- 1 ; intensities in km/mol.
b Reference [58].
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Table 4.45. UHF-CCSD(T) optimized geometriesa of the N2H minimum and transi-
tion state using the PVDZ basis set.

Minimum Transition state
R(N-N) 1.193 1.141
R(N-H) 1.064 1.413
O(NNH) 115.19 117.45
aBond lengths in A; bond angles in degrees.

that we are perhaps missing some important contribution due to higher excitations, we

assess the effect of triple excitations on the geometry. We optimize the N2H minimum

and transition state at the CCSD(T) level using the UHF reference and PVDZ basis

set. The geometries are shown in Table 4.45. At the N2H minimum, the bond lengths

became slightly longer than for CCSD. This brought the geometry into slightly better

agreement with WDR. For the transition state, the N-N bond lengthened by 0.004 A,

but the N-H bond contracted by 0.004 A. Since the difference between the transition

state N-H bond lengths is the point we are attempting to address, we see that triples

increase the disagreement. We would anticipate that if a CCSD(T) optimization were

performed with the PVTZ basis, the N-H bond would lengthen slightly. However, it

would still be significantly shorter than that of WDR. On the basis of the present

calculations, it would appear that the CASSCF/CCI result is slightly overestimating

the N-H transition state bond length, although different basis set choices can affect

the answer. It is quite likely that if the geometry could be determined experimentally,

the bond would be in the range 1.41-1.45 A.

Turning our attention to the energetics, Tables 4.46 and 4.47 show the total MBPT

energies and UHF multiplicities for the N2H minimum and transition state for 1 "e

ROHF and UHF references. From these energetics we can determine the relative

energies and barrier heights as we did for the PVDZ basis. These results are shown

in Tables 4.48 and 4.49. Looking first at the energies determined at the optimized
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Table 4.46. MBPT energies using UHF and ROHF references for the 2A' state of N2H
using the PVTZ basis at the CCSD optimized geometry.

UHF (Mult.) (Mult.) ROfiF
No T1  With T1

SCF -109.469034 2.155 a -109.459961
MBPT(2) -109.860577 2.090 a -109.871365
MBPT(3) -109.870736 2.097 2.065 -109.875980

SDQ-MBPT(4) -109.877914 2.083 2.047 -109.882520
MBPT(4) -109.895993 2.082 2.048 -109.903027

a There is no T contribution at the SCF and MBPT(2) levels of theory.

Table 4.47. MBPT energies using UHF and ROHF references for the transition state
of N2H using the PVTZ basis at the CCSD optimized geometry.

UHF (Mult.) (Mult.) ROHF
No T1  With T

SCF -109.447964 2.132 a -109.433380
MBPT(2) -109.847745 2.109 a -109.863454
MBPT(3) -109.850561 2.102 2.073 -109.855367

SDQ-MBPT(4) -109.860396 2.096 2.050 -109.864399
MBPT(4) -109.881081 2.094 2.051 -109.889031

a There is no T contribution at the SCF and MBPT(2) levels of theory.

Table 4.48. Relative energy of N2H with respect to N2 + H and height of dissociation
barrier with respect to N2H at PVTZ optimum geometries (kcal/mol).

SCF MBPT(2) CCSD
AE Barrier AE Barrier AE Barrier

UHF 11.00 13.13 17.21 9.60 4.50 11.30
ROHF 16.37 17.72 12.51 4.74 4.62 11.73
WDR results: AE = 3.01, barrier = 12.15.
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Table 4.49. Relative energy of N2H with respect to N2 + H and height of dissociation
barrier at several levels of theory using CCSD optimized geometries with the PVTZ
basis set (kcal/mol).

SCF MBPT(2) MBPT(3) SDQ-MBPT(4) MBPT(4)
AE

UHF 9.95 19.01 8.31 8.69 11.49
ROHF 15.65 12.24 5.02 5.80 7.07

Barrier Height
UHF 13.22 8.05 12.66 10.99 9.36

ROHF 16.68 4.96 12.93 11.37 8.78
WDR results: AE = 3.01, barrier = 12.15.

geometries, we see that at the SCF level, the relative energy between the N2H mini-

mum and separated fragments has increased slightly upon improving the basis while

the barrier to dissociation has increased slightly. At the correlated level, the reverse

is true. The relative energy has decrased while the barrier has increased. However,

the barrier height is still underestimated by both methods when compared to WDR.

The relative energy between the minimum and separated fragments is very close at

the CCSD optimized geometry, being only about 1.5 kcal/mol over the estimate by

WDR, but the ROHF reference does a much better job of approaching this value

at finite order, being consistently lower than the UHF result. The variation in the

barrier height at finite order, as seen in Table 4.49 is somewhat of a mystery. There

does not appear to be much of a pattern to decide which reference gives a better

barrier height, since the two references alternate in which gives an answer closer to

CCSD (and WDR). This does not appear to be a basis set effect, since the variation

holds for both the PVDZ and Pv TZ basis sets. However, based on the description of

the geometries, one must give serious consideration to use of the ROHF reference at

finite order.

This molecular system provides another example where ROHF would be the ref-

erence function of choice. The ROHF-MBPT(2) geometry is qualitatively correct, so
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a large basis set study at this level could provide valuable information without the

extra expense of a CCSD calculation.



CHAPTER 5

CONCLUSIONS

This work has presented the development of a treatment of electron correlation

which utilizes a reference which is an eigenfuction of spin. The driving force for this

development has been the need to be able to address the effects of electron correla-

tion in high-spin open-shell systems where the standard UHF reference suffers from

contamination from higher spin multiplicity states. The ROHF reference provides an

excellent starting point which alleviates this particular drawback of the UHF refer-

ence.

The implementation of ROHF-MBPT has exploited the properties of the CCSD

equations to yield a computationally efficient method. This implementation poten-

tially allows for the exploration of either large molecules with small to modest bases,

or small molecules with very large bases. The wavefunction has been demonstrated

to contain desirable properties and is often not only qualitatively correct, but quanti-

tatively correct at even the MBPT(2) level of theory. Furthermore, the development

of analytical expressions for the gradient of the energy and implementation at the

MBPT(2) and CCSD levels has greatly expanded the usefulness of this method.

The small set of molecular systems studied in this work have demonstrated that

the ROHF MBPT method is an excellent tool which overcomes many shortcomings

of UHF based methods. However, it also has shown that situations can arise in

which the ROHF reference may suffer from symmetry breaking. Another problem is

that the ROHF method tends to localize unpaired electrons, and this may lead to a

82
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qualitatively incorrect starting point. Such occurrences can cripple the study of some

problems with an ROHF reference. In such situations, other approaches to dealing

with the problem of UHF spin contamination might be used, especially infinite-order

CC methods that have the advantage of being relatively insensitive to the starting

reference function. In particular, UHF-CC methods can still deal with situations in

which use of an ROHF reference is inappropriate, such as complete cleavage of a bond

to go from a closed-shell system to two open-shell systems.

Finally, the implementation of the ROHF-MBPT methods has been done in a for-

mally, and practically, efficient approach. Wherever the ROHF reference can be used,

the most economical path to obtaining answers at the MBPT level will probably be

with ROHF-MBPT, since it is general, has appropriate orbital invariance properties,

is size-extensive, and has gradient techniques which are up to several times faster

than those envisioned for projected techniques.



APPENDIX A

ALGEBRAIC DEVELOPMENT OF ROHF-MBPT ENERGIES

A.1 General Derivation

To present a general derivation that embraces most cases, our starting point will

be the CCSDT equations [7, 8]. These may be written in terms of the usual cluster

operators T = : t .. {atibtj .. .} as

(aIf0. + JDT, + WTI + WT2 + f0.T 2 + WT 3 + WTIT 2 + WT2/2

+f,T?/2 + WT /3!1O)c = 0 (A.1)

(alIW + fDT 2 + WT 2 + WTI + foT 3 + WT + WT2/2

+WTT 2 + f.,TT 2 + WT2/2

+WT1T 2/2 + WTT 3 + WT1/3! + WT,/4!0)c = 0 (A.2)

(,IIkfDT3 + WT21IWT 3 + WT2/2 + f.T2/2 + WTT 2 + WTT 3 + WTT 3

+fo.TT 3 + WTIT 2/2 + WTT212 + WTT 3/2 + WTT 2/3!I0)c = 0 (A.3)

where 10) represents the reference function and (a1, (1 1, and (abc I represent all single,

double, and triple excitations, respectively, from the reference funciton. The energy

is given by

E = (01HI0) +AE (A.4)

AE = (0IWT 2+WT/2+f 0,,T,1 0)=E 2+E 3+E 4 +.'"

84
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The normal ordered Hamiltonian is

HN = H - (OJH O) = f + W = >-fpq{ptq} + I -(pqjrs){ptqtsr} (A.5)
pq pqrs

Normal ordering has the advantage that the correlation correction, W, is entirely

separated from the orbital relaxation part f.

In particular, the one-particle part of the Hamiltonian is

f = -fi{iti} +>-fa{ata} +-fij{itj} +Zfab{ab}
i a i<j a<b

+ - ffi [{ita} + {ati}]
ia

= -n.fo4f.Jfo,,-fD+ f. (A.6)

where D, indicates the diagonal elements of f, foo indicates the non-diagonal part

of the occupied-occupied block, f,,, the non-diagonal virtual-virtual block, and f,
0CC

the occupied-virtual block of the Fock matrix, i.e. fpq = (plhlq) + E(pJJjqj). The
j=1

C indicates that all products involve common W or f indices with the attached

7' operators (i.e. are "connected"). Making contractions of the second-quantized

operators gives explicit orbital-based equations.

It is well known that iterating the CC equations defines various orders in per-

turbation theory. In the usual canonical SCF case, fo0 = 0, f,,v = 0, f,, = 0 and

D, = (i + Ej + 1Ea., - qb ) so

(flDlTI10) = (Ei - E)t (A.7)

("ID2T210) = (Ei + 'Ej - 1E - Cb) t- (A.8)

Using the projection operators Q, to indicate projection on the n-excitations,

P = 10)(01, with E, = (WT (-- ' )) through fourth-order terms, we have

Q2D2 T(')P = Q 2WP (A.9)
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AE = (WT(1,)) = (A.10)

Q2D2 T(!)P = WT(1)P (A.11)

AE = (WT (2)) = E2 + E, (A.12)

Q1D1 T(2)P = Q2WT(1)P (A.13)

Q2D2T 3)P = Q2 (WT (2) + WT2()T(1)/2 + 3+ WT ( )) P (A.14)

Q3D3 T(2)P = Q3 (WT2)) P (A.15)

AE = (WT (3)) =E 2 -E3-E
D + E Q + E4s +E T  (A.16)

and, of course, higher order terms can easily be generated in a similar way.

In the ROHF case, we take our orbitals from a high spin, single determinant

ROHF calculation. However, in the spin orbital basis, f,, $ 0, so operationally

we will treat the problem as a non-Hartree-Fock case. Whereas diagonalizing the

f matrix corresponds to the UHF canonical solution, and the full CI with UHF or

ROHF orbitals would be the same, treating f0, via perturbation theory permits more

rapid convergence since spin contamination is not introduced into the unperturbed

problem.

At first sight we might be tempted to consider foo + f,,, as part of the perturbation,

with D, being composed of diagonal Fock matrix elements. This is the H0 choice of

Carsky and Hubac [211. However, one of our primary conditions is that our generalized

perturbation equations must be invariant to transformations among just the occupied

or virtual orbitals, just as CC theory is. This requirement demands that all parts of

fD = -D,, + foo + f... be treated equivalently. However, to retain the simplicity of

the diagonal case, we can exploit this invariance of the energy and diagonalize the

fD matrix to introduce semicanonical orbitals [30], so that fD = -D,,. The other

element we require is that fo,, is assumed to be the same order in electron correlation
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as W. This is not necessary, and a more general double perturbation treatment can

be developed, but this is a convenient choice for many purposes.

Iterating the non-canonical CC equations, and now requiring both T1 and T2

contributions,

Q2D2TP)P = Q2WP (A.17)

Q1DIT (1)P = Q foP (A.18)

from which our generalized MBPT(2) energy is

E2 = (WT (1) ) + (foTl( )) (A.19)

Similarly, for MBPT(3)

Q2D2T 2)P = Q2 (WT (1) + WT()) P (A.20)

QIDIT(2 P I Q (foT (1) + WT ( 1) + WT0')) P (A.21)

E3 = (WT 2  + (fT 2  + WT()T)2) (A.22)

MBPT(4) introduces effects of T3 as well. Hence, we have

T2 p2 w ( 2) + WT (2) + fT ( 2) + W (T)) 2

+WT)T ) +¢ (1)T2 1 W 1 (T j) 2)

1 foY'1T2() +2 1W (T1))() P (A.23)

QD 1 T(3 )p =Q (w 2 ) + WT(2) + foT(2) + (2)+ T(1)T(1)
IDI2 2 +5) WJT

2 + (T1(1 ) ) 2 P (A.24)

where

Q3D3 T(2) P = Q3WT(')P (A.25)

This results in

E 4 = (WT (3 )) + (fo, T3 )) + (WT(2)T (1 )) (A.26)
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The fourth order energy excluding triple excitations, SDQ-MBPT(4), is obtained by

removing the contributions of T (2) in Eqns. (A.23) and (A.24).

Clearly, generalization of the above to any order is straightforward. Requiring the

full T (3) and T( ) amplitudes to evalute E 4 is an unnecessary complication, however,

since the E4 expressions can be simplified via the 2n rule of MBPT as used by Bartlett

and coworkers [31, 32].

We know from MBPT that for V = fo, + W, Ro = (E0 - H0 )-1 , and Q -

--QDn'Q,, we have

n

E4 = (VROVROVROV)L = (01VI(3))L

-(0(2)Eo _ H010(2))L (A.27)

where

(2)= -[Q2T
(  Q1 T ) + T Q3T ± Q T 1 )'T /2 + Q3T(')T(l ) + Q, TP)T(')/2 J0)

(A.28)

Notice the last three terms are linked but disconnected. Readily, one can see

that (0 1VI(
2))L gives the same expression as in Eqn. (A.22), since triple and higher

excitations do not contribute.

Using Eqn. (A.28)

(T /(2)t + (2)\ + (T 2)tDI T(2)) + (T3 2 tD3T (
2 ) + 2 (tD 2 T(I Tl))

\.T22) + L 2 I /p2)/ ,2\ 1 T(2)tD ,-(1) ())

+1/T(')tT(')t r 2) -/(t ,)n 0T). T2t T)
(\l "l "J "2 / 4 ')t (1 D2-Tl -I 1 TV)L + 3 3T1 2

+ T(,)tTtl)tD T(2)) ± (T1()tT2)tDT P)T()L T(1)tT)tD4T2)T(1)

4

(A.29)
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The limitation to linked terms applies to some of the non-linear terms. Hence,

most of the evaluation of E4 requires simply "squaring" the appropriate T ampli-
tude, e.g. (T (2)tD T 2)) &1t? l2 (fi + f - faa - fbb), where the fpp refers to the

i>j

a>b

diagonal elements of the Fock matrix in the semicanonical basis.

A little inspection and use of the factorization theorem, which in the D4 case

gives D4 = _ + 1 will demonstrate the equivalence between Eqn. (A.26) and

Eqn. (A.29). A more detailed demonstration of this equivalence is given in the next

section. The non-linear parts of T( 3) and T( 3) , given by T()L and T(3)L in Eqns.

(A.23) and (A.24), represent only connected pieces of the third-order wavefunction;

the necessary disconnected pieces contained in Eqn. (A.29) arise from (WT 121l,

which also contributes a piece to (T 2)tD T(2)}. Hence, alternatively, we can evalute

E4 =(T(2)tD T (2), + (T (2)tDiT (2)) + (T 2)tD 3 (2))

+(WT(2L) + (foTNL) + (T1)t (D1 T 2)) T(1))

+ T (1)tf T(2)\  (A.30)
\1 Jov

all terms of which depend solely on T amplitudes of first and second order. It is

important to note that the D1 in the sixth term is associated with T( 2) , and that the

last term arises from a linear part of T(3 ) not accounted for in the first three terms

of Eqn. (A.30).

A.2 Equivalence Between Expressions for the MBPT(4) Energy

In this section we expand on the equivalence of the MBPT(4) energy expressions

without use of the third order amplitudes (Eqns. (A.26) and (A.29)). Recalling

the equations for the perturbation theory amplitudes and energies (Eqns. (A.18) to
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(A.26)), we substitute for the third order amplitudes in the fourth order energy as

follows:

(WT,3))  p pW r , QWQT ( 2)  Q~oQT ( 2)

2 [Q2'WQ:& 2 + Q2  + Q2f0 ,Q 3T3

2WQ 2 (T(1)) 2 + Q2 WQ1 T 1 )Q2T (1) + Q2Jf1.VQl TQ 2T2
1 W ()2

+ 1Q 2WQ 1 (Tl( 1)) 2] P

T21)tWT(2) + T21)tT(2) + T21)tflf.T(2) + T2(1tVT(2)

T(1)tW (T()) 2 +T(1)tWT(1)T(1) +T ()tfe T()T2)
+T +')" T 2l + T2 Jo. l -2(

1 (1) tW
+ -T2 "-(TI( )  (A.31)

(.f, TI3)) pfo,, [Q1 ,T(2) + Q, W Q1T(2) T ,o 2'q¢ '  (2) +Q W T ( 2 )

(f~T3~ POD,4T)+QWQT
2 + Q~fovQ2T 2 + QIWQ 3T 3

12 1 ()21
+ Q1 WQ 3 (TP()TP()) + 'QIVVQ 2 (1)) ± QifOV.Ql (T1) 2

= T()tWT(2) + T(1)tWT(2) + T 1)tf T (2) + Tl(1)tWTIj2)

TI(1)tWQ 3 (T )T2(1)) + 1T(1)tWQ 2 (T') 2 ± T1 tor (T/l))2

(A.32)

We can now label the terms from each of these energy pieces. For the time being,

we will deal only with these two contributions to the energy. We will discuss the

terms arising from (WT(2)T 1 )) later in this section. The terms from the equations

above are given in Table A.1.
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Table A.1. Termsa from the CC expansion of the MBPT(4) energy.

Terms from T( 3 )  Terms from T ( 3)

1) T(1)TWT r(2)'"" 1) T(')tWT (2)
2) TOl)tWT (2) 2) T1)tWT(2)

2 ) t ) f o, , T ( 2) 3 T ( i ) t f o,, T (2)

4) T)tWT(2)4 Tj()tWT(2)

5) 1T(IDtw (TOi)) 2  5) T(1)tWQ3 (Tj()T2( )

6) T2(1) WT1 i)rT(1) 6) 1TJ(l)tWQ 2 (TI)) 2

7) T(1)? f,, T(I>T211) 7) r(l) t f."(+(l) 2

5) 1 ( ) iw ( T ( )) 2

2 1
'All terms arise from only the connected
pieces of the third-order wavefunction.

The alternate expressions arising from the use of the 2n rule of perturbation theory

leads to Eqns (A.27) to (A.29). Labelling each of the terms from Eqn. (A.29) gives

us Table A.2.

The MBPT expansion for E(4) has all the energy terms. We will now see how

each of the terms for the MBPT expansion match up with the terms from the CC

expansion. Keep in mind that we still have not dealt with the terms from (WT(2)T()).

Also, each of the terms in Table A.1 represent contributions from connected pieces of

the third-order wavefunction.

Using the (1) terms from T, 3) and T(3):

T(1)tWT22 + TI)tWT2 - [T(1tw + T I)tW] T(2 ,

1 [T(1)tW + T(l)tW] D 2 T2(2)
D2 21

= (2)tD2 ,(2) (A.33)

which accounts for (a) of the MBPT expansion.
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Table A.2. Terms from the MBPT expansion of the MBPT(4) energy.

Terms from the MBPT expansion

a) (T(2)lD2T(2))

b) (T2)t D MT 2)
C) (,2)tn T(2)\

\t3 "33 l
d)1/q(1)tq,(1)tD Tp(1)T (1)

)_4 1 +D2  1 1L

e) T (T()tT()t n WT( 1)T2() (A
f) 11To)tT(1)tn T,(')T('))L

gl ,'r(2)tn T(1)T(1)\

Usin thel (4 term fro tTD2 T2)

) T2 3  t P T)

j ) T2())tT 

((1 

)tA 

3)2 
)

Factorizing (e) of the MBPT expansion:

(T(l)t T(2) t Da3T(I)T(1))\L

D3 =D, + D2 1 +1
DID2 -DID2 -D, D 2

(fo W -i +t -D2 )T,()T('))"- = lT,')tWLT(1)T(1)\' +L (2/3L\T2/(1)tf.,'o()T(1)\) (A.34)

The first term of the last equation corresponds to (5) of T, ), while the second term

of the last equation corresponds to (7) of T ( 3 ) .

Using the (4) term from T(3):

T(1)tWT(2) _ (I)tWD3 T(2)
3 D3

T.(2)T(2))rD(2) (A.35)

which accounts for (c) of the MBPT expansion.
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Factorizing (d) of the MBPT expansion:

1 (T:1)tn"1)tn 'T1)T(1)\L
4

D2 DI D+1 D 1 1

DI D' D1D DR + D'

1 (v1 1 T()T()\ IT(t. TV),TM) +1(T)\ I () TV)T(,1T)\
" (fo nil + i1 b 1 -4 1Jvt)"l/J 4\'1dvl "1 /

-" 1 i T(, tf (T (1)) )  (A .36)

which accounts for (7) of T (3).

Manipulating (i) from the MBPT expansion:

3T(2)t= 31 T()tW

D3

(T 3)tw) D3TIT2(') - T(')tWT ')T(i) (A.37)

which accounts for (6) from T(3).

Factorizing (f) from the MBPT expansion:

I (T21)tT2)t D )t4 T2) T(1)())L
4

D 4  D 2 + D_ 1 1

D2D~ D D 2 - DD2, 2 D ,D 2 D 2
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I(WW( 1 - + -2 (1)T ( )\ =  \1(T(1)tWT1)T(1)\ + M(1)tWT)() 2i

1 ~(T21)tW (T(,))2) (A.38)

which accounts for (5) from T2(3).

Factorizing (j) from the MBPT expansion:

(Tj(1)tT2(lt D3T(2))

D3 D 1+ D2  1 1
D1 D 2 = D1D 2 -D 1  D 2

(foW D----+ -) T(2)) = (T 1)tWT(2)) + (T(l)tfoT(2,) (A.39)

The first term of the last equation corresponds to (4) of T(3) and the second term

corresponds to (3) of T (3).

Using (6) from T(3) and (8) from T(3):

1T(1)tW (T(")) 2 1Tl()tw (Tp) 2 1 [T(1w'tw + T(1)tw] (T())
2

11 [TP)tW + Tl(l)tW] D 2  
2

22

1- T(2)tD 2 (TI(I)) 2  
(A.40)= 2

which accounts for (g) of the MBPT expansion.

Factorizing (h) from the MBPT expansion:

1 (T )tn.(1)t D (2)\
2\1 1 2 2
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D2 = D1 +D 1 1
DID'" D1D - D1  D'

(fo. (fo + -T( T'2 )) = 1(T(1) +f(2) + (TP)tfT2))2\- Do , 1 T+ 2Tl~ fo2(2

= (TO1)tf o T ( 2)) (A.41)

which accounts for (3) from T (3 ) .

Manipulating the (b) term of the MBPT expansion:

(T(,2)t 'D T(2) )

Since

TV2)t = [T+(1)tfov-+ V(2)tW + T(1)tw] 1 (A.42)

Then substituting for T (2 ) t we get

(T(2)tDIT(2)) = (T21)tfoJT(2)) + (T2)tWT(2)) + (TI)tWT(2))  (A.43)

The second term of the last equation accounts for (2) of T ( 3) , and the third term

accounts for (2) of T ( 3) . However, we cannot account for the first term of the last

equation using the terms in Table A.1.

At this point, we have accounted for all the terms in the MBPT and CC expansions

which involve connected pieces of the third-order wavefunction. We now examine the

remaining CC energy term, (WT'2)T(1 )). If we factorize (WT 2)TO')), then

1 D2 D2  1 (1 + 1
DDI D2 - DID D 2  1Di D D2

(WT 2)T1 ,)) = DfW T(2) + ( W__D [f ° T ( ' ) + WT(') + WT')] T' ))
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[T2)t T2 ) ) T2ub/PD(

-((T1)tf T(12)) + A.)1 +

The first term of the last equation accounts for the remaining term of (b) in the

MBPT expansion. The remaining terms all appear to be the same as terms (6) - (8)

for T23) in Table A.1. These terms, however, represent the disconnected pieces of the

T23 part of the wavefunction. Therefore, these three terms as found in the expansion

for T23 represent the connected parts of the wavefunction, while their appearance in

(WT (2)T1~ )) represent the disconnected parts of the wavefunction.

With all the terms accounted for, we can now express the fourth order energy as

E4 = (T(2)tD 2T(2)) + (T2)tD, T12)) + (T(2)tD 3T42))
(3) ( ,T3)N L(2

+ (fN, T 3 ) ++ (WT(2)T(1))

-(T €)t f T2)) + (T (1)tforT( 2)) (A.45)

where the second-to-last term in Eqn. (A.45) accounts for the fact that this term

appears in both the T "squared" term and the (WT(2)T0 )) terms and is hence

overcounted, and the last term is not present in any of the "squared" terms and

needs to be added. Eqn. (A.45) is equivalent to the expression for the fourth-order

energy given in Chapter 2. Alternatively, we can take the expansion of WT (2)T 1I)

and represent it as

(WT 2 )T 1 ) (T(1)tfoT'2)) + (T ( ' )t (DT12)) T1 )) (A.46)

which then allows us to give the E4 energy as shown in Eqn. (A.30).



APPENDIX B

ROHF COUPLED-PERTURBED HF (CPHF) DERIVATION

This appendix deals with the derivation of the additional elements required for

solution of the ROHF CPHF equations. The end result gives the terms required for

construction of the A matrix of CPHF theory. These additional terms have been

incorporated in the ab initio program system ACES II [33] to provide for correlated

analytical gradients. Currently, these analytical gradients are available for MBPT(2)

and CCSD.

ROHF conditions:

'fAI + 'fAI = 0 (B.1)

OfAI = 0 (B.2)

"fli = 0 (B.3)

First condition: 'fAj + OfAI = 0

-AI+ =0 (B.4)

'fA = E CpA 'CG I (B.5)
pL,

afAI + ao fA 1 [ aC -f. wC,, + 0 .A --f w l + CA af oL +

ax ax ax ax

97
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"~f.C ,+ C,,Aa fpC ± CmAfm (B.6)

but,

aCA PZUACP (B.7)

so

0= 1 z IUPXACtP ftCI+ CA a "fl C.1 ± ' C afIWCA] +

E EUCP A aOP 'I-C I+ CA Of"I+ UPICLP in/M-A] (B .8)
AII PO P

Summing over piv gives us

[Z UPX A "f PI+lA' + E Up"I Of PA ] +[EZUPA '6f P I±f.Z :UPXI Of PA] (B. 9)

where

ax

We can further consolidate the expression to

EZUP)A (QfPl + OfP)+ E UPX ("TAP + IfAP) + 7fA"I + 'fAX = 0 (B. 10)
P P
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Since P can run over all types of orbitals (doubly occupied, singly occupied, and

virtual), we can break the summation over P down to these types:

EUPA (ofPI+ fP) ZUXA E (o.. + )+ (B.11)
P J

E UXA (.fSII + /"fl , ) + (B.12)
1

E uA (fB I + f BI) (B.13)
B

Recalling our ROHF conditions, we can see the term given by Eqn. (B.13) dis-

appears because of the first ROHF condition (Eqn. (B.1)). The f part of the term

given by Eqn. (B.12) disappears because of the last ROHF condition (Eqn. (B.3)).

We now have:

> P UA (ofp PI + OfP = EUJ Q'J (I + I J 1) + U UIX 'foI (B. 14)
P J 1

Expanding the second summation of equation (B.10) gives

E UI (afAP +'fAP) =E u, (-fAJ +fAJ) + (B.15)
P J

z U (-SAI + 3fA) + (B.16)
1

z UI, (rfA B +/ fAB (B.17)
B

The term given by equation (B.15) disappears because of the first ROHF condition.

The a piece of the term given by equation (B.16) disappears because of the second

ROHF condition. This yields:

E Up', (7f AP +'fAP) = ZU, fAI + E U,I (.f AB + "fAB) (B.18)
P 1 B
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At this stage, let's explore what we know about the UX's. We have six classes of

gN's:

{Uii UAB fU 12  Ju 1I UAI fUA1
UJI UBA U 2 1  UIU VIA U1A

If we are dealing solely with a particular subspace (doubly occupied, singly occu-

pied, or virtual), the energy is invariant to arbitrary rotations within the subspace.

We can therefore define the UX's for these subspaces as fits our needs. With this in

mind, we define the following Ux's:

1 SX

UBj - 2 1i

= 1 (B.19)

2

where SX represents the derivative of the overlap matrix S.

These definitions account for three of the classes. Now let's examine the last two

terms of equation (B.10).

(B.20)

= hi, + E DoA(poaluvA) (B.21)

O - h, + 9 A (Itor1 vA) + 1 DoA (B.22)
OorA Ox e' ,9X

where

PV OhX
'Uh,
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OfA L I AhxC., + 'X(yoIjvA)C.A C.I + ZDG,,.CjACI('Ojjv)x

(B.23)

where

(yal~vA X . (,yIIvA)

This leads to the expression

c'A,= hx1 + EZDA(AoIIIA) + (AIIIA)x (B.24)

YD(A(IIA)x = ZC,,mCm,(AuIIIA~x +

C,, C,\, CC(Aa IA) x (B.25)
aAn

I D,,(AoIIA)x = Z(AmIIIm~x + (AnlIn)x (13.26)
oAm n

EDx,\(AouIIIA) = Ei:~ a~cm \(AoIIIA) +E5 C,,Cm(mrjI)

GA oA X O

Recalling equation (B3.7) and substituting into the last equation we get
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Z:Dx,(AouIIIA) = ~ jU""'C' ±ojI)

>ZZZUmC..mCp (AoIA) +
aA mP

Up Z , UCpCA. (AcTI I IA) +
cTA n P

Z1SSU~nCcnCAP(AoxIIIA) (B.28)
orA n P

S D.X(AojjIA) = E p.A~jm +5 EE SSUp.,(AmIIIP) +
ciA m P m P

L S U. (APII In) + L S U~(AnjjIP) (B.29)

Substituting equations (B.24) and (B.26) into equation (B.29) yields

Olf'XII hx1 + S(AmIIIm)x + (AnIIIn)x +55Upxm(APjlIm) +
A m n m P

SSUpm(ArnIIIP) ± jEUP~(APHIn) ±SSU'p'(AnIIIP)
m J' n p n p

(B.30)

Solving for (fj will yield a similar expression, except that a and 03 terms will be

reversed. The resulting expression for (3f~x is:

"fj= hx11 + S(AnIIn~x + (AnIIm)x + 55LJ~(APIlIn) +
n m nl P
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L Up,,(AnIIP) + _ _ Upm(APIIIm) + Z Y Upm(AmIIIP)
n p mp mp

(B.31)

Substituting equations (B.31), (B.30), (B.18), and (B.10) into the last equation

and separating into known and unknown pieces results in the following equation:

Z UIA (afJI + P1fJ) + (UXAaflI + U-XI '6fAl) + 1 Ua (afAB + "fAB) +
J 1 B

~ot

Z Upm (APIjmj)... + E E Upx(AmIIIP)aWa.a + UPn(APIIIn).O,3
m P M P n p

+ L L UP..(AnlIP).#3  + L E UPn(APjIIn)#,epO + 1: L Un(AjIIIP)))3 flp
n p n p n p

+ Z: E Upm (API1Im)0,0.3 + E E Up.m(AmriI 1 1 a
m p m p

ac1 
16

hi, + hx , + Z(AmIlIm) ooo + Z(AnlInfl) p+Z(AnIIn)x 3 ,3

E ( Ar ll lm ) x (13.32)
mm

From the discussion of the UX's before, we have three classes which need to be

determined. We therefore need to solve three simultaneous equations. Let's derive

the next one from the second ROHF condition (Eqn. (B.2)).

0 afAl - [ AcA ',, + C- a 0  ,,C + Coaf2,, -1] (B.33)

axaf UVZCM1X Of a

Sax (B.34)
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=It hull +I 1: D,,\(IiavA) (B.35)

0 -f _ Ohul aDGA _______0

ax t 0+jx (pv)+1 , X(B.36)
aAAcax

hx- h + EZDx(poIlvA) +± ZD,,(/ulvA)x (B.37)

C aA ~D~(moIloA) + DGa.(pollvA)xC,IACt/] B.8

c'A IhAl + ZDx,\(AoI11A) + ZDA\(AalI1A)x (.9

ZD, A(AoI1 A) x = EZCma,, \ .(Ao7IjiA). + ,C nC n( OIA)

GA A m A n eoj

(B.40)

Z D~r(AoII 1A)x = (AmII 1m)x.,a, + (AnI 1n~ (B.41
GA m cr n k( .1

E~,(AIA) EC ac~m(Il\
EDAAoIA O, m m,\ ax,1 )0..

cr ac An(UIAmIa

GA n

Z>LCIn a (B.42)
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Recalling equation (B.7) and substituting into the last equation,

E Dx(A7II1A) = EzEjUpx.CupC,,m(AaII1A),ccyaa.+
aA aA -P

Z , UpxmC,,mCxp (AoUI Acc +
aA mP

E Up. CupCx.(AoI 1 A).#.# +

a,\ n P

E Dx,(Aoj1A) = EzUpxn(AP111m)...a ± + zUpxm(AmI1P)ca ±+
aAm P m P

LZUpx(AP n).O.O/ + L Un(AnIP).O.,o/ (B.44)
n P n Pn

Substituting (B.44) and (B.41) back into (B.39) we arrive at:

=hx 1 + E(AmI1mx.,, + Z(AnI1n~x,3.,+
m n

EZ Z Uxm(APII 1m)... 0 + EE~Upx(Amjj1P)QQ~CVC +

L PnAj~),. + LzE UPl(AnI1P),30VJ (B.45)

Now let's look at the other two pieces.

=- 2 [OC;A af C + Xkf + CjAf 2'9C] (B.46)
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Using equation (B.7),

_ = [ UPACIpafP-C-1 + afA1 + E UlCVP fL,,CA (B.47)
i 14L I P

0 = E UPAcfpl + OfAXI + E U ,l'IAP (B.48)
P P

Let's expand the first and third terms of the last equation.

_. = U fJ+ 2A ± 21f + Ej UBA fB1 (B.49)
P J 2 B

: UP1fAlP = UJX 1AJ + U2f OA2 + E UBlt1fAB (B.50)
P d 2 B

The last term of equation (B.49) and the second term of equation (B.50) disappear

because of the second ROHF condition. Substituting (B.50), (B.49), and (B.48) into

(B.45) gives the full second equation needed:

EUA OaI + E Ufi + E UfAJ + : 1 +
J 2 J B

E E Upx. (APII lmlQoa + E E Up r (AmIl 1P)ao +

m p m p

Lip Upx.(API1n)./3Q/3 + L Upx.(AnlP).O.)3
n p n p

- hx + ,(Amjjlm)x.,,, + ,(Anjjln)x,, (B.51)

Let's now derive the necessary expression from the third ROHF condition (Eqn.

(B.3)).

Of,= C.,'fM.C.I (B.52)
1wV
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0__ (B.53)
I3f " CAI '6fC'1 + co 9 f- 1  + Ct1'f ( 53

ax ax '9ax

Using equation (B.7), the last equation becomes

0= E E UPX ilppfiC + 13f + 'CE , (B.54)

gv IPp

where

'Oi,= CM, ", C",

This leads to

0 = uifp, + OR, + Z UI/Ip (B.55)
P P

Expanding the first and third terms of this equation,

EU ',fPI = EUJI6fJI+Z:UX,/f2I+ZEUBifBI (B.56)
P 1 2 B

E UPX~fiP = E UJfiJ + E U2 I'3f1 2 + E UBfiB (B.57)
P J 2 B

Due to the third ROHF condition (Eqn. (B.3)), the second term of (B.56) and

the first term of (B.57) disappear. This yields

EUfP = ZU.,lfJI+ZEUB ,fBI (B.58)
P J B

E V=I l IP  = EU2"jfl 2
+ E±Uif I B (B.59)

P 2 B

(B.60)



108

Now let us deal with gfxi

"f.= h,. + E D,,\(go, vA) (B.61)

,9 O- +SM,,\IX(y vA) +E D,, ZDqXP7I1 (B.62)
axA

Ox = hx, + ZD' (paIlvA + EZD,,(sIiavA~x (B.63)

=Z[C.ihxwC.'i + E Dx (pallvA)Cul C.V + E3 Da \IvA)xC,,aC,,i (B.64)

=h1I + Z (1IIIA) + ZD,41IIIlIA)x (B.65)
orAA

Z:Dx(t7IIIA) Z C,\GflllIA) ax lu

axC.\m(1aIIA).. E )>C.7'C\ ax(1aIIA)0.0.

(B.66)

a L~1I~A L E U~nCaPCAn(1uIIIA~g##g +
aA aA n P

Z~U~ Z ~Gn CAP (1 UlI IA)pppp +
oA n P

Zpmp, .. (Il A~,, +
aAm
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CF E Upx.CumC,\p(lallIA,crpo (B.67)
OA m p

ZDx,\(laIIIA) L Up(~lnOc + +

m P 'm P

ZDG,\1u ED,,\ ZZCaflAf= l(crII)'O~ + ZC lmlmbILx c/ (B.70)

/3 0 13a

CAn m

Substituting (B.70) and (B.68) into (B.65) yields

Ox hl 1 + (lnhIIn)' #, + (lmIIIm)xO,# +
ni m

LI E UkO(1I4npp/3/ + L E U~n(nIIP)/3/3,O +
n p nI p

Of
E E U~ lIIM00 + E EI U~m (1MIIIP)3or/3 (B.71)

The third overall equation can now be written using (B.71), (B.60), and (B.59) in

(B.55):

E Uj" f JI + E UXI'f B I + E UXI'f 12 + E UB)Ipf IB +
JB 2 B
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L Up,(1PIjIn),00# + L , Up.(1nnIP)00,00s +
n p n p

EE Un n(1PIIIm)aGz + E E UPm(mIIP))aA,
m p m p

- h+ ElmIJlm)X (B.72)

The other two overall equations are (B.32) and (B.51).

There remain three classes of UX's to deal with. Of these, the only ones we wish

to deal with are those which are indicated with asterisks (*):

UIA UA UlA

The Ux's in each class are related by the expression:

Up, + Uqp = -SpX9 (B.73)

Using this relation, the left hand side (LHS) of equation B.72 becomes

E UXI 3fhI = E (SIj - UI) .f. (B.74)
J J

The lead term of the last equation is known and can be moved to the right hand

side (RHS) of (B.72).

We can now break down the E for the two-electron pieces on the LHS of (1.72).
P

Since we have included a spin orbital index on each Ux, this determines the spin on P

(it must match or Ux = 0). Since we need only deal with spin orbitals for P, we can

break each E to be over occupied and virtual pieces. The four terms can therefore
P

be expanded as shown below:



Z ZUP'n(1nPIn)r1313  = ZUO~n(1noII #O + L E Ux.(neI#n}1 j3
n P n 0 nl e

atC a

Z ZUP'm(l1mIP)313a = E Ui'M(lMmII 1 -3 c + Ei E U.Xm(lmIIf)O.a1
M P mI mf

(B.75)

Since several of the terms in the last equation are double sums which run over the

same range (such as the first term), the labels are arbitrary and can be rearranged.

Doing so yields

EjI E (U.I + UnxO) (1ojIn)#00031 + LI L U,,I ((leIIn)313131 + (lnIIe))31313 3)
nl 0 n e

af a at

E E (Ulx ± Umxj) (llIIIm)3a13a + E Ej Uf~m ((If IImr13oi13 + (lmIIf)0.0.3)

(B. 76)

From (B.19) we can now express the last equation as

n 0 ni C

E E (-S~n) (llIIM)O-013 + E E3 Lf"m ((f 1IM)03a13 + (lMlIf)O3)
M~m f

(B.77)
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Equation (B.72) can now be written as

S(-UX)" fJ + E (UB , I fB + Ux:fB) + E v :f,2 +
J B 2

'3

LZU,1 ((1efjIn)0i,, 3 + (1njle i##) +
n e

E E U .m ((if ltm)PP. + (1mllIf)PO-)

In f

n J

-kon' n(lln}° o In) S'm (ll1 lm)aa, (B.78)

Now let's perform similar manipulations on equation (B.51). The first four terms

of (B.51) are of the UXf type. Using (B.73), we can rewrite these terms in the

following manner:

EUJA fJ1 = E (-SXj UA) fJ1
J J

EZUAaf21 =E -SL-UX)'l
2 2

EZUJ YA J =E Sl -UX)"A
J J

E UBX IAB (B.79)
B

Rearranging terms yields

E (-SA'afJ 1 - Si~jafJA) + Z (-SaLf21) + E (-UYJafJ - U1J fJA) +
J 2 1
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S(-UQ2 N 21 ) + Ej UB'1 'fAB (B.80)
2 B

The two-electron pieces of (B.51) can have the E expanded into the spin-orbital
P

basis which gives

01 a C1

EZUpxn(AmIIP).aaa = EE x,(Aa laooaE ~ x(rll).

LZUp(AP1 )pai = E UxAoln,.+ LZU(Ae n)pcyo
n P n1 0 n e

LU~n (Ai1P)iOai6 = E OnAjl),.+ EUxnnle.oo
n1 P n1 0 n1 e

(B.81)

Using the same logic in going from (B.75) to (B.76), the last equation becomes

ara at

ZZ(Uln ±Uml) (AlIIlrm)aaaa + ZUfxm ((AfIllm)aaaar+ (AmIllf)aaaaro) +

Z Z(Uo71 + Un0) (Aoll~l)a.a0 + L ZU~x((AeIln)ao. 0 + (Anflle~).O
n 0 n e

(B-82)

From (B.19) we can now express (B.82) as

Z Z(-S) (AlIjlm)aaaa + lii ZUA ((AfIllmn)aaaa+ (AmIIlf~a) .. )+
in m f

0 0

Z Z(-Sx1) (AoIlll)aOa0 + L LU~x((AeIllfln)OaO+(An il1)aca0) (B.83)
n1 0 n e
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We can now write equation (B.51) as

~(-UAX~ffJl - Ul<j'fJA) + E (-U 2 f2 l) + N- UX1 '~fAB +
J2 B

E E Ufxm ((AfIImaa + (Am IIlf~a ...) +
m f

LjU.,x ((AeI1n).a 1 + (AnIlle)13a13)
n e

- -[hx 1 - (S~AXJf~l + S XJafJA) -~S 2Af 2 1 ±h

(AmIlm)'... +Z(AlhI1)xa1
m n

Sjx(AIjIm~aaaa - LS5 Aj n.. (B.84)

We can now perform these same manipulations on (B.32). Using (B.73) where

appropriate, the UXf terms of (B.32) are

ZUJXA (aYI fjJ I = 5 -AX - UAJ) (ajI ± afJI)

z(UlXAaf1I + Uj~jfAI) = 5(-SA1 'If 1 1 - U 1Af11I + UIXY'fAl)

5UBX1 (afAB + '3fAB) (B.85)
B

After rearranging terms we get

5(-SAXJ) (Ofjj + "h)+ E51 (-SA'1 ) Al1 + 5(-U1AXIf1 1 + UI'IfA1) +

SUBXI (afAB + "fAB) + 5(-UAX) (afjj + OI)(B.86)
BJ
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Using the expansion of E into a spin-orbital basis, the two-electron pieces of
P

(B.32) become

Z Upxm(APIIIm)...., = Z ZUx.m(Alj jIm)aaaa + Z Z Urm(AfIlIm)aaaa.

E E Upxm (Am 11IP).... = EE >Uxn(AmIIIl)aa+ EI f U(AmnIIIf)aaaako
m P mI mf

ZE Up'(API)jOp = EZU(AoIInpa,3+ ZZU,(AeIn)/3a/
n P n1 a n e

>ZLU'n(AhIIP)/3a/ = E U,n(A n I I Io).O.O ± LZEU (An I Ie)3a
n p n1 0 n e

LU(APIn)OOOO3/ = EZUn(AoIIn3//3/3+ ZZUAelI ln)//3/
n1 P n 0nC

)3 /3/3 13

ZZ UP71(AnjIP)OOOO3/ = EZUn(AnIIo)3/3/33± ZZU,!AhIIe)//3/
nl P n1 0 n1 e

a( a a a1
j:EUp'(APIIm)/3a/3a = E Ulxm(AlIm11 a3 + EI E Uxm (Af 11Im)?/3a/3

a a a ar

EE ZUpxm(AmIIIP)0.0.3 = EL EU,'(AmIIl/3a/3a + E Ufx(AmflIf)3a/3a

(13.87)

Using the same logic in going from (B.75) to (B.76), the last equation becomes

ar ak a

E E (Ujxn + Umx1 ) (AljIrm)aaaav + EZ E Urxm ((Af IIrm) ... c + (AmIIjIf)aaaa,) +

E E (U.71 + U 1) (AojI)flaO/ + L U.!I ((AeIIn)aO/ + (AflIIIe).Oo,/3) +
n1 0 n1 e
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Z Z (U + U~x.) (AojIn)~d + Url ((AeIIn)OO + (Anjfle pOO +
n 0 n e

ak a a

EEZ (Q. + Uxn1 ) (AlIIIm)O,op. + I: Urmn ((Af IIm).o + (AmIIf),o.a3)
M~m f

(B.88)

Using (B.19) and condensing summations, the previous equation becomes

E (-Sbx) ((AlIlIrm).... + (AlIlIrm),a,.) + L (-Sox) ((AoIIIn)..O
ml no

(AoIIn)OOOO) +

ZSUfxm ((Af I IIm) .... + (Af II Im),o~o + (Am I IIf )a...a. + (AmIf)a,.,a) +
m f

U5 Un ((AeI11In).,pa,, + (AeIIIn)ooop + (An 11Ie).O.ao + (An 11Ie)0000)

(B.89)

We can now write (B.32) as

5 A ( JU ) ('fJ I + '3f I ) + Q4 ( CU 1 I + U;YI fAI) + E UBX (OfA + "fA B) +
J I B

S5UfJ, ((Af 11Im).aaaa + (Af 1Im)0ajja + (Am 11 If~aa (AmIIf),,Oom) +
M f

L UI~ ((AejjInr)a.a, ± (AeIIIn)Oooo ± (AnIIe),a, 3 + (AnIIIe)OOOO)
n1 e

[hA'I +hxA - 5SAL (afJ + -fI 5 A s 1 f11 + (AmIIm)l.,aa±

(AnjlIn)',a0, + (AnIIn)x,,,,, + 15(AmIIm)xa~
CV 01 mCO
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- Si ((AlIIm).... + (Alj Im)p~p )
ml

M11

- L S.o. ((AojjIn),op,o + (AoIIIn)00p)] (B.90)
noJ

Our current working equations are (B.90), (B.84), and (B.78). We need to convert

the remaining UXf terms of these equations to the spin-orbital basis. If we examine

these terms from equation (B.90), we see that they are

Z (-UAXJ) (&fjI +-3fJI) +E (-U-Vlafl I+ UlI"fAI) +"Z uBI (afAB +3fAB) (B.91)
1 B

Recognizing that the singly occupied space is "occupied" for a spin and "virtual"

for /3 spin, the terms in the last equation can be rearrange to

Z(UJm Y +fmI + Z (-UAL) Of- + L ZUf4fAf + E UX rAe (B.92)
m n f e

It is important to note that the first part of the second term of (B.91) is now part

of the first term in (B.92). This is because the Al term is a virtual-occupied piece for

a spin and needs to be combined with the doubly occupied space of the first term of

(B.91) to span the complete a spin subspace. Similarly, the second part of the second

term of (B.91) is now contained in the last term of (B.92), since it is required to span

the complete virtual /3 spin subspace.

We can now use these terms to begin to derive an expression for the CPHF equa-

tion. We want to associate terms based on the spin cases of AI and the other indices

(f n or en).

Case 1: AI = aa, fm= aa
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LHS: E (-U~n) 'f. + E UfxIafAf + E E Ufxm ((Af IIIm)o... + (Am IIIf)aOaa)
m f raf

RHS: - ES~xmcf., + (AmIIIm)x.... - E Six.(AlIJIrm)aaaa + hx1]

Case 2: AI = act, en =//

16
LHS: L Ei Ux. ((AeIIIn) 13a,, + (AnjIIe)13a13)

n e

RHS: - [L(AlInflCOO - LZ~nAjjn.~

Case 3: Al = #0/, fm = a

LHS: E E Uf ((Af IlIm)o.#.i + (Am jjIf)13a13a)
m f

RHS: - E(AmIIm~xail. - E Sjm(Aljl ).0

Case 4: AI 33 en =//

LHS: L (-U'n) 13fta ± Z x UIfAp ~(AI~~p A Ie~33
n en e

/3 /3 /
RHS: L I SA'13fn1 + Z(AnIn)xflfl,3 - 1: Son(AoIIn), 313f + hx

nn no

(B.93)

Examining equation (B.84), the UXf terms are
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(-UAXJOftl - UXo'fJA) + E (-UA2 0'f21 ) + E UjfAB (B.94)
J 2 B

Using the same logic as used in going from (B.91) to (B.92), equation (B.94)

becomes

a

E (-UAmfm,) + + (-Ui'.on°Af) + E UfiafAf (B.95)
m n f

where the second term of (B.94) has been put into the first term of (B.95). Let's look

at the two possible spin cases for (B.84).

Case 1: Al = aa, fm = aa

LHS: (Uxm fml) + E UilafAf + E E Ufxm ((AfI1lm).,a,. + (AmIl f)...a)
m f m f

RHS: - E (SAmofmi + Sl'XmfmA) + -(Am11lm),,,, , - E Sl,,,(AlIllm)II,, ,
mnr ml

+hxAI]

Case 2: Al = aa, en = /

LHS: - Ux ((AeIln)oa)abeta + (AnIle),oe) + -(-Ul) flA
n e n

RHS: -[Z(Anln)x 2 ,82 - S,,, (aozin),z

(B.96)

Examining equation (B.78), the Uxf terms are:
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Z (-Usj) fJI + E (UBI fBJ + UXI/flB) + z U2/3 f12  (B.97)
d B 2

Using the logic described earler, (B.97) can be rearranged to

(-UX) If.t + E UXtIfAe + E UX1OffI (B.98)
n e f

where the last term of (B.97) has been put in the second part of the last term of

(B.98). Let's now look at the two possible spin cases.

Case 1: 11 =/3 , fm = aa

LHS: E U U, ((lflIlm)1 ,a, + (lm1lf),3apa) + E U Xf
Innf f

RHS: - [11IM)X0.0 - EZS1(1lm)O13c13

Case 2:11 =3f3,en=/3

LHS: L (-Ulx) Of,, + Z_ Uj 1fi, + > ,jUxn ((1flIln)3#,3o + (lnllle)#pO#)
e n e

RHS: Lx~n + L1lnxg - L o ll ngp+ hxj]
n n no

(B.99)

We now need to take the spin-orbital basis expressions for each of the ROHF

conditions (each of the cases given by (B.93), (B.96), and (B.99)) and put them in

the general CPHF form.
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The general form of the CPHF equations axe

A,,,+AaaaaU±Q ppUflX0 = Baa (B. 100)

A,,,,Ux + A)3 aUax = BO)3 (B.101)

Now let's factor (B.93) so it resembles equations (B.100) and (B.101). Using cases

1 and 2 of (B.93) we can construct a piece similar to (B.100).

(-UmA"ofmI) + ZUfIafAf +EZZUfm((AfIIIm ) +(AmjIf))+

E U. ((AeIlIn) + (AnIlIe))
n e

a Of-hxt + EI Sxmaf.j - Z(AmIm)x + E Sx(AIIIm) - -(AnIlIn)x +
In In ml n

LS~xn(AollIn) (B. 102)
no

Using cases 3 and 4 of (B.93), we get a piece similar to (B.101).

(Un fnI) + E QUJ~fA] + Un ((Aelln) + (AnIlIe)) +
n n e

E E Ufm ((AfI1lm) + (AmI1If)
m f

13 13 (3

--hxAt + L SAnfnt - Z(AnIn)x + L S~xn(AoIlIn) - Z(AmIlm)x +
n n no In

E_ Sm (A 1 Im )  (B. 103)

a
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Factoring (B.96) in a similar fashion yields

(-U~ o'~fni) + EI Uf EfA] + U f ux. ((Aflim) + (Amll f)) +

ZZ Ux. ((Aell ln) + (Anhile)) + L_, (-Ujn0 fnA)
n en

-hxA + E S~mofmi - (AmI1m)x + 1_ Sm(Allj1m) - j(AnjIIn)x +

Inl In M n

Y So.(Aojjln) (B. 104)
no

Factoring (B.99) in this way yields

(-U XOfn) + E U ±fl, + U. ((leI In) + (1lIe)) +
e n C

E E Ufx ((IfiljIm) + (imiljIf)) + E f,,f
m f f

-hl + L S -X.1n' - ZL1njjln)x + L So(loIII n ) - E(mImr)x +
n n no m

ESI,,, (11 Ilm) (B. 105)
ml

In the programs, we can easily calculate the full a and 3 blocks. The separation

of the 1-space from a and f in the proper fashion is needed, but not for calculating

the values. Looking at the LHS only, we have the following a pieces from equations

(B.102) and (B.104):

(-U m) afm I + E UtO'fA] + E E Ufm ((AfI1lm) + (AmI11 f) ) +
f f I f
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(-U.) f, + E" U]1fxfA + - ,Uf,, ((Aflllm) + (AmIlllm))

(B.106)

Combining both these terms to cover the full a space, we get

[Q
(Uaxm )fmi +n E ZUfai] +ZEZE Ufm ((afilim) + (amllif)) (B.107)

M f I

To get the proper form for the A matrix in the CPHF equations, we need to be

able to factor the Ux's from each term. Doing this to (B.107) yields

S(-Um) rf m
i + ml Umfmr 'fa + E Ufm ((afilim) + (amllif))

Mf m f m f

(B.108)

Ot

E E [-aafr m i + 6imfaj + (afllim) + (amllif)] U.m (B.109)
m f

The general A matrix element for this spin case is therefore

Aaii m = - ,.6afafaf + cbirnfaf + (afjjim) + (amllif) (B.110)

Let's now look at the case for the LHS for /##//. This takes the / terms from

equations (B.103) and (B.105):

(-U, ) f i + F U: A, + L L Un ((lellIn) + (Anllle)) (B.111)
I n 

.
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Combining these pieces to cover the full/3 space gives

Zx fti+EUA-1fa e +ZZUei( (aEI I ii + 0(I I i)) (B. 112)

S J ne

Once again, we need to factor UX's out to yield the form for the CPHF A matrix

C.(- UARj~TI+Z~L 1 U~'f + Z((a~jjj*) + (afII ))
n e n e

(B.113)

Z Z[6i~f i , fae + (~ii1i) + (ajjIIj] X ~ ~ (B. 114)
n e

The general A matrix element for this spin case is therefore

Aaf= 6afin + &SO'fa + (d~lifi) + (ahI1ie) (B.115)

We now need the cross terms, with respect to spin. The /3 parts of equations

(B.102) and (B.104) for the LHS give us a/a/3:

, Z UI ((Ae In) + (An IIe)) + Ux ((AellIn) + (AnilIe))
n e nI e

+ LI (-b; ,) ffnA (B.116)
n

Combining these pieces gives us

U ,, ((aelli'h) + (ahtliE')) + L (-Ul,,)fnA (B.117)
n e TI



125

We need to deal with the last term of the previous equation. Since the first

ROHF condition (equation (B.1)) is fAI " fA = 0, then OfAI = -O3fAI. Making this

substitution gives

S(-UX.) (-"f,.A) (B. 118)
n

Continuing with the UX factorization gives

U, ((aelli) + (aiji )) + & UE ,afj, (B.119)
n e n e

Recognizing that 1 is occupied for a, the last equation becomes

L Ux, ((a~Ijih) + (ailIii)) + L L 6&iUXfjoffi (B.120)
n e n e

S[(a~Ijiii) + (aiiItiE) + &j~/fj] Ue~ (B.121)
n e

The general A matrix element for this spin case is therefore

Aaiff = (a lliii) + (aiiIjii) + be/ffa (B.122)

The last spin case comes from the a parts of equations (B.103) and (B.105):

E E Uf,, ((AfllIm) + (AmilIf)) + E E UAx. ((lfIlIm) + (lmllIf))
m f m f

+ 1: Uf", 'If (B.123)

Combining terms is this equation yields
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EE U}x. ((dfI m) + (am I f))+ f Off (B.124)
m f f

Continuing with the Ux factorization gives

of or

E E U"m ( (af im) + (am O f)) + E E 6,mIUfmrf1I (B.125)

Recognizing that 1 for 3 is unoccupied, the last equation becomes

aa

S Um M ((af Iim) + (am IIif)) + 1:1- bm aUf'mff (B.126)
m f m f

tZ [(afllim) + (amilif(+,mr'Ifj,] UfXm (B.127)
m f

This gives the general A matrix element for this spin case as

Adifm = (afllim) + (amIlif) + 6bmi 3ff (B.128)

The various A matrix elements are

A.ifm = (afI1im) + (am lif) + i,,,f.4 - 52 fmi

=~ef (a~Ijifz) + (aiiIIIE) + bi3ffta

A = (afllim) + (amllif) + bmrd'ff, (B.129)

Since the spin of the Fock matrices is accounted for by being either a or f Fock

matrices, the spin on the label is superfluous. We can therefore write the A matrices

in an understandable form as follows (and now using only one set of labels):
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atem =(aellim) + (amllie) + bi .. fae , e~fn

A""= (ae11z m) + (am ilie) + bim~fa ,fm

aiem (aellm) +(am jjie) +6e/ 3 farn

="" (aetli m) + (amilie) + 6..a'fei (B. 130)
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